pub fn with_dynamic_goal<G, GoalFn, CostFn, K>(
graph: G,
start: G::NodeId,
goal_fn: GoalFn,
edge_cost: CostFn,
) -> AlgoResult<G::NodeId, K>
Expand description
Dijkstra’s shortest path algorithm with a dynamic goal.
This algorithm is identical to dijkstra
,
but allows matching multiple goal nodes, whichever is reached first.
A node is considered a goal if goal_fn
returns true
for it.
See the dijkstra
function for more details.
§Example
use petgraph::Graph;
use petgraph::algo::dijkstra;
use petgraph::prelude::*;
use hashbrown::HashMap;
let mut graph: Graph<(), (), Directed> = Graph::new();
let a = graph.add_node(()); // node with no weight
let b = graph.add_node(());
let c = graph.add_node(());
let d = graph.add_node(());
let e = graph.add_node(());
let f = graph.add_node(());
let g = graph.add_node(());
let h = graph.add_node(());
// z will be in another connected component
let z = graph.add_node(());
graph.extend_with_edges(&[
(a, b),
(b, c),
(c, d),
(d, a),
(e, f),
(b, e),
(f, g),
(g, h),
(h, e),
]);
// a ----> b ----> e ----> f
// ^ | ^ |
// | v | v
// d <---- c h <---- g
let expected_res: HashMap<NodeIndex, usize> = [
(b, 0),
(c, 1),
(d, 2),
(e, 1),
(f, 2),
].iter().cloned().collect();
let res = dijkstra::with_dynamic_goal(&graph, b, |&node| node == d || node == f, |_| 1);
assert_eq!(res.scores, expected_res);
assert!(res.goal_node == Some(d) || res.goal_node == Some(f));