formatting_nostd/format_buffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
use core::ffi::CStr;
use core::mem::MaybeUninit;
/// A self-contained buffer that can be used with both Rust's formatting utilities and
/// libc's sprintf.
///
/// Because those tools panic on errors, overflowing writes are truncated rather
/// than returning an error. A non-zero truncation count is included in
/// `Display` output of this object, and can be checked via the `truncated`
/// method.
///
/// The generic parameter `N` is the internal size of the buffer. One byte is
/// reserved for NULL to support conversion to `CStr`.
///
/// To format a message with Rust's formatting:
/// ```
/// # use formatting_nostd::FormatBuffer;
/// use core::fmt::Write;
/// let mut buf = FormatBuffer::<1000>::new();
/// let x = 42;
/// write!(&mut buf, "{x}").unwrap();
/// assert_eq!(buf.as_str(), "42");
/// let y = 43;
/// write!(&mut buf, " {y}").unwrap();
/// assert_eq!(buf.as_str(), "42 43");
/// ```
pub struct FormatBuffer<const N: usize> {
buffer: [MaybeUninit<u8>; N],
/// Does *not* include NULL byte.
used: usize,
truncated: usize,
}
impl<const N: usize> FormatBuffer<N> {
const CAPACITY_INCLUDING_NULL: usize = N;
const CAPACITY: usize = N - 1;
pub fn new() -> Self {
assert!(Self::CAPACITY_INCLUDING_NULL >= 1);
let mut res = Self {
buffer: [MaybeUninit::uninit(); N],
used: 0,
truncated: 0,
};
res.null_terminate();
res
}
/// Remaining capacity in bytes.
pub fn capacity_remaining(&self) -> usize {
Self::CAPACITY - self.used
}
pub fn capacity_remaining_including_null(&self) -> usize {
Self::CAPACITY_INCLUDING_NULL - self.used
}
/// How many bytes (not chars) have been truncated.
/// This shouldn't be relied on for an exact count; in particular
/// the accounting is not precise in `sprintf` if utf8 replacement
/// characters need to be inserted.
pub fn truncated(&self) -> usize {
self.truncated
}
fn null_terminate(&mut self) {
self.buffer[self.used].write(0);
}
/// Reset to empty. This may be cheaper than assigning a fresh
/// `FormatBuffer::new`, since the latter requires copying the uninitialized
/// buffer. (Though such a copy could get optimized to the same cost
/// depending on opt level, inlining, etc.)
pub fn reset(&mut self) {
self.used = 0;
self.truncated = 0;
self.null_terminate();
}
// The initialized part of the internal buffer.
fn initd_buffer_including_null(&self) -> &[u8] {
let buffer: *const MaybeUninit<u8> = self.buffer.as_ptr();
// MaybeUninit<u8> is guaranteed to have the same ABI as u8.
let buffer: *const u8 = buffer as *const u8;
// SAFETY: We know this byte range is initialized.
let rv = unsafe { core::slice::from_raw_parts(buffer, self.used + 1) };
assert_eq!(rv.last(), Some(&0));
rv
}
fn initd_buffer_excluding_null(&self) -> &[u8] {
let res = self.initd_buffer_including_null();
&res[..(res.len() - 1)]
}
/// `str` representation of internal buffer.
///
/// If you'd like to render the buffer including any non-zero
/// truncation count, use the `Display` attribute instead.
pub fn as_str(&self) -> &str {
// SAFETY: We've ensured that only valid utf8 is appended to the buffer.
unsafe { core::str::from_utf8_unchecked(self.initd_buffer_excluding_null()) }
}
/// Returns `None` if the buffer has interior NULL bytes.
pub fn as_cstr(&self) -> Option<&CStr> {
CStr::from_bytes_with_nul(self.initd_buffer_including_null()).ok()
}
/// Appends the result of formatting `fmt` and `args`, following the conventions
/// of libc's `sprintf`.
///
/// Any non-utf8 sequences in the resulting string are replaced with the
/// utf8 replacement character. If truncation occurs, the truncation count
/// doesn't necessarily account for all such substitutions.
///
/// Currently calls libc's `vsnprintf` internally and panics on unexpected error.
/// TODO: Ideally we'd find or create our own reimplementation of `vsnprintf` instead,
/// since `vsnprintf` isn't guaranteed to be async-signal-safe.
///
/// # Safety
///
/// `fmt` and `args` must be consistent, as with arguments to libc's `sprintf`.
pub unsafe fn sprintf(&mut self, fmt: &CStr, args: va_list::VaList) {
// We use a temp buffer for the direct libc destination, so that we
// can relatively easily do a lossy utf8 decode from that buffer to
// our internal buffer.
//
// We *could* instead do a lossy decode in place to avoid having to
// allocate this additional buffer. However, because the unicode
// replacement character is multiple bytes, each insertion would be an
// O(N) to shift of the rest of the buffer. Performance-wise that's
// probably fine since in the common case nothing would be substituted,
// but it'd also make the code significantly trickier.
//
// Meanwhile, this stack allocation is ~free... as long as we don't
// overflow the stack.
let mut buf = [MaybeUninit::<i8>::uninit(); N];
let rv = unsafe { vsnprintf(buf.as_mut_ptr() as *mut i8, buf.len(), fmt.as_ptr(), args) };
// Number of non-NULL bytes for the fully formatted string.
let formatted_len = match usize::try_from(rv) {
Ok(n) => n,
Err(_) => {
panic!("vsnprintf returned {rv}");
}
};
// we use a hyper-local helper function to ensure that the new slice has the correct lifetime.
// <https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html#caveat>
unsafe fn transmute_to_u8(buf: &[MaybeUninit<i8>]) -> &[u8] {
unsafe { core::slice::from_raw_parts(buf.as_ptr() as *const u8, buf.len()) }
}
// `vsnprintf` never writes more bytes than the size of the buffer, and
// always NULL-terminates. i.e. if it had to truncate, then only
// `buf.len()-1` non-NULL bytes will have been written.
let non_null_bytes_written = core::cmp::min(buf.len() - 1, formatted_len);
let initd_buf = unsafe { transmute_to_u8(&buf[..non_null_bytes_written]) };
for decoded_char in crate::utf8::decode_lossy(initd_buf) {
if self.truncated > 0 || decoded_char.len() > self.capacity_remaining() {
self.truncated += decoded_char.len()
} else {
self.write_fitting_str(decoded_char)
}
}
// Also account for bytes truncated in our call to vsnprintf. We do this
// *after* the decoding loop to support writing as much as we can of the
// current vsnprintf result before we start truncating.
self.truncated += formatted_len - non_null_bytes_written;
self.null_terminate();
}
// Panics if the bytes don't fit.
fn write_fitting_str(&mut self, src: &str) {
assert!(src.len() <= self.capacity_remaining());
// SAFETY: the pointer arithmetic here stays inside the original object (the buffer).
let dst: *mut MaybeUninit<u8> = unsafe { self.buffer.as_mut_ptr().add(self.used) };
// `MaybeUninit` guarantees this cast is safe, as long as we don't try to read
// the uninitialized data.
let dst: *mut u8 = dst as *mut u8;
unsafe { core::ptr::copy_nonoverlapping(src.as_ptr(), dst, src.len()) };
self.used += src.len();
self.null_terminate();
}
}
impl<const N: usize> core::fmt::Write for FormatBuffer<N> {
fn write_str(&mut self, src: &str) -> Result<(), core::fmt::Error> {
if self.truncated() > 0 {
// Never write more after having started truncating.
self.truncated += src.len();
return Ok(());
}
if src.len() <= self.capacity_remaining() {
self.write_fitting_str(src);
return Ok(());
}
// Find safe end to split at.
// TODO: consider `str::floor_char_boundary` once it's stabilized.
let mut nbytes = self.capacity_remaining();
while !src.is_char_boundary(nbytes) {
nbytes -= 1;
}
self.truncated += src.len() - nbytes;
self.write_fitting_str(&src[..nbytes]);
Ok(())
}
}
impl<const N: usize> core::fmt::Display for FormatBuffer<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if self.truncated == 0 {
write!(f, "{}", self.as_str())
} else {
write!(f, "{}...<truncated {}>", self.as_str(), self.truncated())
}
}
}
impl<const N: usize> Default for FormatBuffer<N> {
fn default() -> Self {
Self::new()
}
}
// Ensure the system libc is linked.
extern crate libc;
extern "C" {
// Use libc's `vsnprintf` function. The `libc` crate doesn't expose it, so
// we declare it ourselves.
//
// From `sprintf(3)`:
// > int vsnprintf(char *str, size_t size, const char *format, va_list ap);
//
// `va_list::VaList` is ABI compatible with libc's `va_list`.
fn vsnprintf(
str: *mut core::ffi::c_char,
size: usize,
fmt: *const core::ffi::c_char,
ap: va_list::VaList,
) -> i32;
}
#[cfg(test)]
mod test {
use core::fmt::Write;
use std::ffi::CString;
use super::*;
#[test]
fn test_format_buffer_write_str_exact() {
let mut buf = FormatBuffer::<4>::new();
assert!(buf.write_str("123").is_ok());
assert_eq!(buf.as_str(), "123");
assert_eq!(buf.truncated(), 0);
}
#[test]
fn test_format_buffer_write_str_truncated() {
let mut buf = FormatBuffer::<3>::new();
assert!(buf.write_str("123").is_ok());
assert_eq!(buf.as_str(), "12");
assert_eq!(buf.truncated(), 1);
}
#[test]
fn test_format_buffer_write_str_truncated_unicode() {
let mut buf = FormatBuffer::<3>::new();
// U+00A1 "inverted exclamation mark" is 2 bytes in utf8.
// Ensure that both bytes are truncated, rather than splitting in the
// middle.
assert!(buf.write_str("1¡").is_ok());
assert_eq!(buf.as_str(), "1");
assert_eq!(buf.truncated(), 2);
// While there is 1 byte of capacity left, once bytes have been truncated
// the buffer truncates all additional writes.
assert_eq!(buf.capacity_remaining(), 1);
assert!(buf.write_str("2").is_ok());
assert_eq!(buf.capacity_remaining(), 1);
assert_eq!(buf.truncated(), 3);
}
#[test]
fn test_format_buffer_display_truncated() {
let mut buf = FormatBuffer::<3>::new();
assert!(buf.write_str("123").is_ok());
assert_eq!(format!("{buf}"), "12...<truncated 1>");
}
#[test]
fn test_format_buffer_write_str_multiple() {
let mut buf = FormatBuffer::<7>::new();
assert!(buf.write_str("123").is_ok());
assert_eq!(buf.as_str(), "123");
assert!(buf.write_str("456").is_ok());
assert_eq!(buf.as_str(), "123456");
}
#[test]
fn test_cstr_ok() {
let mut buf = FormatBuffer::<7>::new();
assert!(buf.write_str("123").is_ok());
let expected = CString::new("123").unwrap();
assert_eq!(buf.as_cstr(), Some(expected.as_c_str()));
}
}
// sprintf tests don't work under miri since we use FFI.
#[cfg(all(test, not(miri)))]
mod sprintf_test {
use std::ffi::CString;
use super::*;
// Wrapper code we expose to our C test harness.
#[no_mangle]
unsafe extern "C-unwind" fn test_format_buffer_valist(
format_buffer: *mut FormatBuffer<10>,
fmt: *const core::ffi::c_char,
args: va_list::VaList,
) {
let fmt = unsafe { CStr::from_ptr(fmt) };
let format_buffer = unsafe { format_buffer.as_mut().unwrap() };
unsafe { format_buffer.sprintf(fmt, args) };
}
extern "C-unwind" {
// Wrapper code that our C test harness exposes to us.
// It calls `test_format_buffer_valist` and returns the result.
//
// We need this to transform varargs (...) to a `VaList`;
// we don't have a way to construct a `VaList` in pure Rust.
#[allow(improper_ctypes)]
fn test_format_buffer_vararg(
format_buffer: *mut FormatBuffer<10>,
fmt: *const core::ffi::c_char,
...
);
}
#[test]
fn test_sprintf_noargs() {
let mut buf = FormatBuffer::<10>::new();
let fmt = CString::new("hello").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "hello");
assert_eq!(buf.truncated(), 0);
}
#[test]
fn test_sprintf_args() {
let mut buf = FormatBuffer::<10>::new();
let fmt = CString::new("x %d y").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr(), 42i32) };
assert_eq!(buf.as_str(), "x 42 y");
assert_eq!(buf.truncated(), 0);
}
#[test]
fn test_sprintf_truncated() {
let mut buf = FormatBuffer::<10>::new();
let fmt = CString::new("1234567890123").unwrap();
// The last *4* bytes will be truncated, only writing *9*.
// Internally we use libc's `vsnprintf` which always NULL-terminates.
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "123456789");
assert_eq!(buf.truncated(), 4);
}
#[test]
fn test_sprintf_truncated_partly_full() {
let mut buf = FormatBuffer::<10>::new();
let fmt = CString::new("12345678").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "12345678");
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "123456781");
assert_eq!(buf.truncated(), 7);
}
#[test]
fn test_sprintf_truncated_unicode() {
let mut buf = FormatBuffer::<10>::new();
// U+00A1 "inverted exclamation mark" is 2 bytes in utf8.
// Ensure that both bytes are truncated, rather than splitting in the
// middle.
let fmt = CString::new("123456789¡").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "123456789");
assert_eq!(buf.truncated(), 2);
}
#[test]
fn test_sprintf_unicode_replacement() {
let mut buf = FormatBuffer::<10>::new();
// Cause the formatted output to have a continuation byte 0x80 without
// a previous start byte; i.e. be invalid utf8. It should get replaced with
// a replacment character.
let fmt = CString::new("x%cy").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr(), 0x80 as core::ffi::c_int) };
assert_eq!(buf.as_str(), "x�y");
assert_eq!(buf.truncated(), 0);
}
#[test]
fn test_sprintf_unicode_replacement_truncation() {
let mut buf = FormatBuffer::<10>::new();
// Cause the formatted output to have a continuation byte 0x80 without
// a previous start byte; i.e. be invalid utf8. It should get replaced with
// a replacment character.
let fmt = CString::new("12345678%c").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr(), 0x80 as core::ffi::c_int) };
// The unicode replacement charater won't fit, so should get truncated completely.
assert_eq!(buf.as_str(), "12345678");
// We're not guaranteeing anything about the exact count in this case,
// other than it should be non-zero.
assert!(buf.truncated() > 0);
}
#[test]
fn test_sprintf_multiple() {
let mut buf = FormatBuffer::<10>::new();
let fmt = CString::new("123").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
let fmt = CString::new("456").unwrap();
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr()) };
assert_eq!(buf.as_str(), "123456");
assert_eq!(buf.truncated(), 0);
}
#[test]
fn test_sprintf_cstr_fail() {
let mut buf = FormatBuffer::<10>::new();
// Cause the formatted output to have an interior NULL byte.
let fmt = CString::new("1234%c56").unwrap();
// We have to cast 0 to `c_int` here, because the vararg ABI doesn't
// support passing a char. (i.e. casting to `c_char` fails to compile)
unsafe { test_format_buffer_vararg(&mut buf, fmt.as_ptr(), 0 as core::ffi::c_int) };
assert_eq!(buf.as_cstr(), None);
}
}