proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13//!
14//! - **Bring proc-macro-like functionality to other contexts like build.rs and
15//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16//!   macros and cannot ever exist in code outside of a procedural macro.
17//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18//!   By developing foundational libraries like [syn] and [quote] against
19//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20//!   becomes easily applicable to many other use cases and we avoid
21//!   reimplementing non-macro equivalents of those libraries.
22//!
23//! - **Make procedural macros unit testable.** As a consequence of being
24//!   specific to procedural macros, nothing that uses `proc_macro` can be
25//!   executed from a unit test. In order for helper libraries or components of
26//!   a macro to be testable in isolation, they must be implemented using
27//!   `proc_macro2`.
28//!
29//! [syn]: https://github.com/dtolnay/syn
30//! [quote]: https://github.com/dtolnay/quote
31//!
32//! # Usage
33//!
34//! The skeleton of a typical procedural macro typically looks like this:
35//!
36//! ```
37//! extern crate proc_macro;
38//!
39//! # const IGNORE: &str = stringify! {
40//! #[proc_macro_derive(MyDerive)]
41//! # };
42//! # #[cfg(wrap_proc_macro)]
43//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44//!     let input = proc_macro2::TokenStream::from(input);
45//!
46//!     let output: proc_macro2::TokenStream = {
47//!         /* transform input */
48//!         # input
49//!     };
50//!
51//!     proc_macro::TokenStream::from(output)
52//! }
53//! ```
54//!
55//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56//! propagate parse errors correctly back to the compiler when parsing fails.
57//!
58//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
59//!
60//! # Unstable features
61//!
62//! The default feature set of proc-macro2 tracks the most recent stable
63//! compiler API. Functionality in `proc_macro` that is not yet stable is not
64//! exposed by proc-macro2 by default.
65//!
66//! To opt into the additional APIs available in the most recent nightly
67//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
69//! these are unstable APIs that track the nightly compiler, minor versions of
70//! proc-macro2 may make breaking changes to them at any time.
71//!
72//! ```sh
73//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74//! ```
75//!
76//! Note that this must not only be done for your crate, but for any crate that
77//! depends on your crate. This infectious nature is intentional, as it serves
78//! as a reminder that you are outside of the normal semver guarantees.
79//!
80//! Semver exempt methods are marked as such in the proc-macro2 documentation.
81//!
82//! # Thread-Safety
83//!
84//! Most types in this crate are `!Sync` because the underlying compiler
85//! types make use of thread-local memory, meaning they cannot be accessed from
86//! a different thread.
87
88// Proc-macro2 types in rustdoc of other crates get linked to here.
89#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.86")]
90#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92#![cfg_attr(docsrs, feature(doc_cfg))]
93#![deny(unsafe_op_in_unsafe_fn)]
94#![allow(
95    clippy::cast_lossless,
96    clippy::cast_possible_truncation,
97    clippy::checked_conversions,
98    clippy::doc_markdown,
99    clippy::incompatible_msrv,
100    clippy::items_after_statements,
101    clippy::iter_without_into_iter,
102    clippy::let_underscore_untyped,
103    clippy::manual_assert,
104    clippy::manual_range_contains,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::new_without_default,
109    clippy::return_self_not_must_use,
110    clippy::shadow_unrelated,
111    clippy::trivially_copy_pass_by_ref,
112    clippy::unnecessary_wraps,
113    clippy::unused_self,
114    clippy::used_underscore_binding,
115    clippy::vec_init_then_push
116)]
117
118#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
119compile_error! {"\
120    Something is not right. If you've tried to turn on \
121    procmacro2_semver_exempt, you need to ensure that it \
122    is turned on for the compilation of the proc-macro2 \
123    build script as well.
124"}
125
126#[cfg(all(
127    procmacro2_nightly_testing,
128    feature = "proc-macro",
129    not(proc_macro_span)
130))]
131compile_error! {"\
132    Build script probe failed to compile.
133"}
134
135extern crate alloc;
136
137#[cfg(feature = "proc-macro")]
138extern crate proc_macro;
139
140mod marker;
141mod parse;
142mod rcvec;
143
144#[cfg(wrap_proc_macro)]
145mod detection;
146
147// Public for proc_macro2::fallback::force() and unforce(), but those are quite
148// a niche use case so we omit it from rustdoc.
149#[doc(hidden)]
150pub mod fallback;
151
152pub mod extra;
153
154#[cfg(not(wrap_proc_macro))]
155use crate::fallback as imp;
156#[path = "wrapper.rs"]
157#[cfg(wrap_proc_macro)]
158mod imp;
159
160#[cfg(span_locations)]
161mod location;
162
163use crate::extra::DelimSpan;
164use crate::marker::{ProcMacroAutoTraits, MARKER};
165use core::cmp::Ordering;
166use core::fmt::{self, Debug, Display};
167use core::hash::{Hash, Hasher};
168#[cfg(span_locations)]
169use core::ops::Range;
170use core::ops::RangeBounds;
171use core::str::FromStr;
172use std::error::Error;
173use std::ffi::CStr;
174#[cfg(procmacro2_semver_exempt)]
175use std::path::PathBuf;
176
177#[cfg(span_locations)]
178#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
179pub use crate::location::LineColumn;
180
181/// An abstract stream of tokens, or more concretely a sequence of token trees.
182///
183/// This type provides interfaces for iterating over token trees and for
184/// collecting token trees into one stream.
185///
186/// Token stream is both the input and output of `#[proc_macro]`,
187/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
188#[derive(Clone)]
189pub struct TokenStream {
190    inner: imp::TokenStream,
191    _marker: ProcMacroAutoTraits,
192}
193
194/// Error returned from `TokenStream::from_str`.
195pub struct LexError {
196    inner: imp::LexError,
197    _marker: ProcMacroAutoTraits,
198}
199
200impl TokenStream {
201    fn _new(inner: imp::TokenStream) -> Self {
202        TokenStream {
203            inner,
204            _marker: MARKER,
205        }
206    }
207
208    fn _new_fallback(inner: fallback::TokenStream) -> Self {
209        TokenStream {
210            inner: inner.into(),
211            _marker: MARKER,
212        }
213    }
214
215    /// Returns an empty `TokenStream` containing no token trees.
216    pub fn new() -> Self {
217        TokenStream::_new(imp::TokenStream::new())
218    }
219
220    /// Checks if this `TokenStream` is empty.
221    pub fn is_empty(&self) -> bool {
222        self.inner.is_empty()
223    }
224}
225
226/// `TokenStream::default()` returns an empty stream,
227/// i.e. this is equivalent with `TokenStream::new()`.
228impl Default for TokenStream {
229    fn default() -> Self {
230        TokenStream::new()
231    }
232}
233
234/// Attempts to break the string into tokens and parse those tokens into a token
235/// stream.
236///
237/// May fail for a number of reasons, for example, if the string contains
238/// unbalanced delimiters or characters not existing in the language.
239///
240/// NOTE: Some errors may cause panics instead of returning `LexError`. We
241/// reserve the right to change these errors into `LexError`s later.
242impl FromStr for TokenStream {
243    type Err = LexError;
244
245    fn from_str(src: &str) -> Result<TokenStream, LexError> {
246        let e = src.parse().map_err(|e| LexError {
247            inner: e,
248            _marker: MARKER,
249        })?;
250        Ok(TokenStream::_new(e))
251    }
252}
253
254#[cfg(feature = "proc-macro")]
255#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
256impl From<proc_macro::TokenStream> for TokenStream {
257    fn from(inner: proc_macro::TokenStream) -> Self {
258        TokenStream::_new(inner.into())
259    }
260}
261
262#[cfg(feature = "proc-macro")]
263#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
264impl From<TokenStream> for proc_macro::TokenStream {
265    fn from(inner: TokenStream) -> Self {
266        inner.inner.into()
267    }
268}
269
270impl From<TokenTree> for TokenStream {
271    fn from(token: TokenTree) -> Self {
272        TokenStream::_new(imp::TokenStream::from(token))
273    }
274}
275
276impl Extend<TokenTree> for TokenStream {
277    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
278        self.inner.extend(streams);
279    }
280}
281
282impl Extend<TokenStream> for TokenStream {
283    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
284        self.inner
285            .extend(streams.into_iter().map(|stream| stream.inner));
286    }
287}
288
289/// Collects a number of token trees into a single stream.
290impl FromIterator<TokenTree> for TokenStream {
291    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
292        TokenStream::_new(streams.into_iter().collect())
293    }
294}
295impl FromIterator<TokenStream> for TokenStream {
296    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
297        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
298    }
299}
300
301/// Prints the token stream as a string that is supposed to be losslessly
302/// convertible back into the same token stream (modulo spans), except for
303/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
304/// numeric literals.
305impl Display for TokenStream {
306    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
307        Display::fmt(&self.inner, f)
308    }
309}
310
311/// Prints token in a form convenient for debugging.
312impl Debug for TokenStream {
313    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
314        Debug::fmt(&self.inner, f)
315    }
316}
317
318impl LexError {
319    pub fn span(&self) -> Span {
320        Span::_new(self.inner.span())
321    }
322}
323
324impl Debug for LexError {
325    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
326        Debug::fmt(&self.inner, f)
327    }
328}
329
330impl Display for LexError {
331    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
332        Display::fmt(&self.inner, f)
333    }
334}
335
336impl Error for LexError {}
337
338/// The source file of a given `Span`.
339///
340/// This type is semver exempt and not exposed by default.
341#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
342#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
343#[derive(Clone, PartialEq, Eq)]
344pub struct SourceFile {
345    inner: imp::SourceFile,
346    _marker: ProcMacroAutoTraits,
347}
348
349#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
350impl SourceFile {
351    fn _new(inner: imp::SourceFile) -> Self {
352        SourceFile {
353            inner,
354            _marker: MARKER,
355        }
356    }
357
358    /// Get the path to this source file.
359    ///
360    /// ### Note
361    ///
362    /// If the code span associated with this `SourceFile` was generated by an
363    /// external macro, this may not be an actual path on the filesystem. Use
364    /// [`is_real`] to check.
365    ///
366    /// Also note that even if `is_real` returns `true`, if
367    /// `--remap-path-prefix` was passed on the command line, the path as given
368    /// may not actually be valid.
369    ///
370    /// [`is_real`]: #method.is_real
371    pub fn path(&self) -> PathBuf {
372        self.inner.path()
373    }
374
375    /// Returns `true` if this source file is a real source file, and not
376    /// generated by an external macro's expansion.
377    pub fn is_real(&self) -> bool {
378        self.inner.is_real()
379    }
380}
381
382#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
383impl Debug for SourceFile {
384    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
385        Debug::fmt(&self.inner, f)
386    }
387}
388
389/// A region of source code, along with macro expansion information.
390#[derive(Copy, Clone)]
391pub struct Span {
392    inner: imp::Span,
393    _marker: ProcMacroAutoTraits,
394}
395
396impl Span {
397    fn _new(inner: imp::Span) -> Self {
398        Span {
399            inner,
400            _marker: MARKER,
401        }
402    }
403
404    fn _new_fallback(inner: fallback::Span) -> Self {
405        Span {
406            inner: inner.into(),
407            _marker: MARKER,
408        }
409    }
410
411    /// The span of the invocation of the current procedural macro.
412    ///
413    /// Identifiers created with this span will be resolved as if they were
414    /// written directly at the macro call location (call-site hygiene) and
415    /// other code at the macro call site will be able to refer to them as well.
416    pub fn call_site() -> Self {
417        Span::_new(imp::Span::call_site())
418    }
419
420    /// The span located at the invocation of the procedural macro, but with
421    /// local variables, labels, and `$crate` resolved at the definition site
422    /// of the macro. This is the same hygiene behavior as `macro_rules`.
423    pub fn mixed_site() -> Self {
424        Span::_new(imp::Span::mixed_site())
425    }
426
427    /// A span that resolves at the macro definition site.
428    ///
429    /// This method is semver exempt and not exposed by default.
430    #[cfg(procmacro2_semver_exempt)]
431    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
432    pub fn def_site() -> Self {
433        Span::_new(imp::Span::def_site())
434    }
435
436    /// Creates a new span with the same line/column information as `self` but
437    /// that resolves symbols as though it were at `other`.
438    pub fn resolved_at(&self, other: Span) -> Span {
439        Span::_new(self.inner.resolved_at(other.inner))
440    }
441
442    /// Creates a new span with the same name resolution behavior as `self` but
443    /// with the line/column information of `other`.
444    pub fn located_at(&self, other: Span) -> Span {
445        Span::_new(self.inner.located_at(other.inner))
446    }
447
448    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
449    ///
450    /// This method is available when building with a nightly compiler, or when
451    /// building with rustc 1.29+ *without* semver exempt features.
452    ///
453    /// # Panics
454    ///
455    /// Panics if called from outside of a procedural macro. Unlike
456    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
457    /// the context of a procedural macro invocation.
458    #[cfg(wrap_proc_macro)]
459    pub fn unwrap(self) -> proc_macro::Span {
460        self.inner.unwrap()
461    }
462
463    // Soft deprecated. Please use Span::unwrap.
464    #[cfg(wrap_proc_macro)]
465    #[doc(hidden)]
466    pub fn unstable(self) -> proc_macro::Span {
467        self.unwrap()
468    }
469
470    /// The original source file into which this span points.
471    ///
472    /// This method is semver exempt and not exposed by default.
473    #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
474    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
475    pub fn source_file(&self) -> SourceFile {
476        SourceFile::_new(self.inner.source_file())
477    }
478
479    /// Returns the span's byte position range in the source file.
480    ///
481    /// This method requires the `"span-locations"` feature to be enabled.
482    ///
483    /// When executing in a procedural macro context, the returned range is only
484    /// accurate if compiled with a nightly toolchain. The stable toolchain does
485    /// not have this information available. When executing outside of a
486    /// procedural macro, such as main.rs or build.rs, the byte range is always
487    /// accurate regardless of toolchain.
488    #[cfg(span_locations)]
489    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
490    pub fn byte_range(&self) -> Range<usize> {
491        self.inner.byte_range()
492    }
493
494    /// Get the starting line/column in the source file for this span.
495    ///
496    /// This method requires the `"span-locations"` feature to be enabled.
497    ///
498    /// When executing in a procedural macro context, the returned line/column
499    /// are only meaningful if compiled with a nightly toolchain. The stable
500    /// toolchain does not have this information available. When executing
501    /// outside of a procedural macro, such as main.rs or build.rs, the
502    /// line/column are always meaningful regardless of toolchain.
503    #[cfg(span_locations)]
504    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
505    pub fn start(&self) -> LineColumn {
506        self.inner.start()
507    }
508
509    /// Get the ending line/column in the source file for this span.
510    ///
511    /// This method requires the `"span-locations"` feature to be enabled.
512    ///
513    /// When executing in a procedural macro context, the returned line/column
514    /// are only meaningful if compiled with a nightly toolchain. The stable
515    /// toolchain does not have this information available. When executing
516    /// outside of a procedural macro, such as main.rs or build.rs, the
517    /// line/column are always meaningful regardless of toolchain.
518    #[cfg(span_locations)]
519    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
520    pub fn end(&self) -> LineColumn {
521        self.inner.end()
522    }
523
524    /// Create a new span encompassing `self` and `other`.
525    ///
526    /// Returns `None` if `self` and `other` are from different files.
527    ///
528    /// Warning: the underlying [`proc_macro::Span::join`] method is
529    /// nightly-only. When called from within a procedural macro not using a
530    /// nightly compiler, this method will always return `None`.
531    ///
532    /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
533    pub fn join(&self, other: Span) -> Option<Span> {
534        self.inner.join(other.inner).map(Span::_new)
535    }
536
537    /// Compares two spans to see if they're equal.
538    ///
539    /// This method is semver exempt and not exposed by default.
540    #[cfg(procmacro2_semver_exempt)]
541    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
542    pub fn eq(&self, other: &Span) -> bool {
543        self.inner.eq(&other.inner)
544    }
545
546    /// Returns the source text behind a span. This preserves the original
547    /// source code, including spaces and comments. It only returns a result if
548    /// the span corresponds to real source code.
549    ///
550    /// Note: The observable result of a macro should only rely on the tokens
551    /// and not on this source text. The result of this function is a best
552    /// effort to be used for diagnostics only.
553    pub fn source_text(&self) -> Option<String> {
554        self.inner.source_text()
555    }
556}
557
558/// Prints a span in a form convenient for debugging.
559impl Debug for Span {
560    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
561        Debug::fmt(&self.inner, f)
562    }
563}
564
565/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
566#[derive(Clone)]
567pub enum TokenTree {
568    /// A token stream surrounded by bracket delimiters.
569    Group(Group),
570    /// An identifier.
571    Ident(Ident),
572    /// A single punctuation character (`+`, `,`, `$`, etc.).
573    Punct(Punct),
574    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
575    Literal(Literal),
576}
577
578impl TokenTree {
579    /// Returns the span of this tree, delegating to the `span` method of
580    /// the contained token or a delimited stream.
581    pub fn span(&self) -> Span {
582        match self {
583            TokenTree::Group(t) => t.span(),
584            TokenTree::Ident(t) => t.span(),
585            TokenTree::Punct(t) => t.span(),
586            TokenTree::Literal(t) => t.span(),
587        }
588    }
589
590    /// Configures the span for *only this token*.
591    ///
592    /// Note that if this token is a `Group` then this method will not configure
593    /// the span of each of the internal tokens, this will simply delegate to
594    /// the `set_span` method of each variant.
595    pub fn set_span(&mut self, span: Span) {
596        match self {
597            TokenTree::Group(t) => t.set_span(span),
598            TokenTree::Ident(t) => t.set_span(span),
599            TokenTree::Punct(t) => t.set_span(span),
600            TokenTree::Literal(t) => t.set_span(span),
601        }
602    }
603}
604
605impl From<Group> for TokenTree {
606    fn from(g: Group) -> Self {
607        TokenTree::Group(g)
608    }
609}
610
611impl From<Ident> for TokenTree {
612    fn from(g: Ident) -> Self {
613        TokenTree::Ident(g)
614    }
615}
616
617impl From<Punct> for TokenTree {
618    fn from(g: Punct) -> Self {
619        TokenTree::Punct(g)
620    }
621}
622
623impl From<Literal> for TokenTree {
624    fn from(g: Literal) -> Self {
625        TokenTree::Literal(g)
626    }
627}
628
629/// Prints the token tree as a string that is supposed to be losslessly
630/// convertible back into the same token tree (modulo spans), except for
631/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
632/// numeric literals.
633impl Display for TokenTree {
634    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
635        match self {
636            TokenTree::Group(t) => Display::fmt(t, f),
637            TokenTree::Ident(t) => Display::fmt(t, f),
638            TokenTree::Punct(t) => Display::fmt(t, f),
639            TokenTree::Literal(t) => Display::fmt(t, f),
640        }
641    }
642}
643
644/// Prints token tree in a form convenient for debugging.
645impl Debug for TokenTree {
646    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
647        // Each of these has the name in the struct type in the derived debug,
648        // so don't bother with an extra layer of indirection
649        match self {
650            TokenTree::Group(t) => Debug::fmt(t, f),
651            TokenTree::Ident(t) => {
652                let mut debug = f.debug_struct("Ident");
653                debug.field("sym", &format_args!("{}", t));
654                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
655                debug.finish()
656            }
657            TokenTree::Punct(t) => Debug::fmt(t, f),
658            TokenTree::Literal(t) => Debug::fmt(t, f),
659        }
660    }
661}
662
663/// A delimited token stream.
664///
665/// A `Group` internally contains a `TokenStream` which is surrounded by
666/// `Delimiter`s.
667#[derive(Clone)]
668pub struct Group {
669    inner: imp::Group,
670}
671
672/// Describes how a sequence of token trees is delimited.
673#[derive(Copy, Clone, Debug, Eq, PartialEq)]
674pub enum Delimiter {
675    /// `( ... )`
676    Parenthesis,
677    /// `{ ... }`
678    Brace,
679    /// `[ ... ]`
680    Bracket,
681    /// `∅ ... ∅`
682    ///
683    /// An invisible delimiter, that may, for example, appear around tokens
684    /// coming from a "macro variable" `$var`. It is important to preserve
685    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
686    /// Invisible delimiters may not survive roundtrip of a token stream through
687    /// a string.
688    ///
689    /// <div class="warning">
690    ///
691    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
692    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
693    /// of a proc_macro macro are preserved, and only in very specific circumstances.
694    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
695    /// operator priorities as indicated above. The other `Delimiter` variants should be used
696    /// instead in this context. This is a rustc bug. For details, see
697    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
698    ///
699    /// </div>
700    None,
701}
702
703impl Group {
704    fn _new(inner: imp::Group) -> Self {
705        Group { inner }
706    }
707
708    fn _new_fallback(inner: fallback::Group) -> Self {
709        Group {
710            inner: inner.into(),
711        }
712    }
713
714    /// Creates a new `Group` with the given delimiter and token stream.
715    ///
716    /// This constructor will set the span for this group to
717    /// `Span::call_site()`. To change the span you can use the `set_span`
718    /// method below.
719    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
720        Group {
721            inner: imp::Group::new(delimiter, stream.inner),
722        }
723    }
724
725    /// Returns the punctuation used as the delimiter for this group: a set of
726    /// parentheses, square brackets, or curly braces.
727    pub fn delimiter(&self) -> Delimiter {
728        self.inner.delimiter()
729    }
730
731    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
732    ///
733    /// Note that the returned token stream does not include the delimiter
734    /// returned above.
735    pub fn stream(&self) -> TokenStream {
736        TokenStream::_new(self.inner.stream())
737    }
738
739    /// Returns the span for the delimiters of this token stream, spanning the
740    /// entire `Group`.
741    ///
742    /// ```text
743    /// pub fn span(&self) -> Span {
744    ///            ^^^^^^^
745    /// ```
746    pub fn span(&self) -> Span {
747        Span::_new(self.inner.span())
748    }
749
750    /// Returns the span pointing to the opening delimiter of this group.
751    ///
752    /// ```text
753    /// pub fn span_open(&self) -> Span {
754    ///                 ^
755    /// ```
756    pub fn span_open(&self) -> Span {
757        Span::_new(self.inner.span_open())
758    }
759
760    /// Returns the span pointing to the closing delimiter of this group.
761    ///
762    /// ```text
763    /// pub fn span_close(&self) -> Span {
764    ///                        ^
765    /// ```
766    pub fn span_close(&self) -> Span {
767        Span::_new(self.inner.span_close())
768    }
769
770    /// Returns an object that holds this group's `span_open()` and
771    /// `span_close()` together (in a more compact representation than holding
772    /// those 2 spans individually).
773    pub fn delim_span(&self) -> DelimSpan {
774        DelimSpan::new(&self.inner)
775    }
776
777    /// Configures the span for this `Group`'s delimiters, but not its internal
778    /// tokens.
779    ///
780    /// This method will **not** set the span of all the internal tokens spanned
781    /// by this group, but rather it will only set the span of the delimiter
782    /// tokens at the level of the `Group`.
783    pub fn set_span(&mut self, span: Span) {
784        self.inner.set_span(span.inner);
785    }
786}
787
788/// Prints the group as a string that should be losslessly convertible back
789/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
790/// with `Delimiter::None` delimiters.
791impl Display for Group {
792    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
793        Display::fmt(&self.inner, formatter)
794    }
795}
796
797impl Debug for Group {
798    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
799        Debug::fmt(&self.inner, formatter)
800    }
801}
802
803/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
804///
805/// Multicharacter operators like `+=` are represented as two instances of
806/// `Punct` with different forms of `Spacing` returned.
807#[derive(Clone)]
808pub struct Punct {
809    ch: char,
810    spacing: Spacing,
811    span: Span,
812}
813
814/// Whether a `Punct` is followed immediately by another `Punct` or followed by
815/// another token or whitespace.
816#[derive(Copy, Clone, Debug, Eq, PartialEq)]
817pub enum Spacing {
818    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
819    Alone,
820    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
821    ///
822    /// Additionally, single quote `'` can join with identifiers to form
823    /// lifetimes `'ident`.
824    Joint,
825}
826
827impl Punct {
828    /// Creates a new `Punct` from the given character and spacing.
829    ///
830    /// The `ch` argument must be a valid punctuation character permitted by the
831    /// language, otherwise the function will panic.
832    ///
833    /// The returned `Punct` will have the default span of `Span::call_site()`
834    /// which can be further configured with the `set_span` method below.
835    pub fn new(ch: char, spacing: Spacing) -> Self {
836        Punct {
837            ch,
838            spacing,
839            span: Span::call_site(),
840        }
841    }
842
843    /// Returns the value of this punctuation character as `char`.
844    pub fn as_char(&self) -> char {
845        self.ch
846    }
847
848    /// Returns the spacing of this punctuation character, indicating whether
849    /// it's immediately followed by another `Punct` in the token stream, so
850    /// they can potentially be combined into a multicharacter operator
851    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
852    /// so the operator has certainly ended.
853    pub fn spacing(&self) -> Spacing {
854        self.spacing
855    }
856
857    /// Returns the span for this punctuation character.
858    pub fn span(&self) -> Span {
859        self.span
860    }
861
862    /// Configure the span for this punctuation character.
863    pub fn set_span(&mut self, span: Span) {
864        self.span = span;
865    }
866}
867
868/// Prints the punctuation character as a string that should be losslessly
869/// convertible back into the same character.
870impl Display for Punct {
871    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
872        Display::fmt(&self.ch, f)
873    }
874}
875
876impl Debug for Punct {
877    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
878        let mut debug = fmt.debug_struct("Punct");
879        debug.field("char", &self.ch);
880        debug.field("spacing", &self.spacing);
881        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
882        debug.finish()
883    }
884}
885
886/// A word of Rust code, which may be a keyword or legal variable name.
887///
888/// An identifier consists of at least one Unicode code point, the first of
889/// which has the XID_Start property and the rest of which have the XID_Continue
890/// property.
891///
892/// - The empty string is not an identifier. Use `Option<Ident>`.
893/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
894///
895/// An identifier constructed with `Ident::new` is permitted to be a Rust
896/// keyword, though parsing one through its [`Parse`] implementation rejects
897/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
898/// behaviour of `Ident::new`.
899///
900/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
901///
902/// # Examples
903///
904/// A new ident can be created from a string using the `Ident::new` function.
905/// A span must be provided explicitly which governs the name resolution
906/// behavior of the resulting identifier.
907///
908/// ```
909/// use proc_macro2::{Ident, Span};
910///
911/// fn main() {
912///     let call_ident = Ident::new("calligraphy", Span::call_site());
913///
914///     println!("{}", call_ident);
915/// }
916/// ```
917///
918/// An ident can be interpolated into a token stream using the `quote!` macro.
919///
920/// ```
921/// use proc_macro2::{Ident, Span};
922/// use quote::quote;
923///
924/// fn main() {
925///     let ident = Ident::new("demo", Span::call_site());
926///
927///     // Create a variable binding whose name is this ident.
928///     let expanded = quote! { let #ident = 10; };
929///
930///     // Create a variable binding with a slightly different name.
931///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
932///     let expanded = quote! { let #temp_ident = 10; };
933/// }
934/// ```
935///
936/// A string representation of the ident is available through the `to_string()`
937/// method.
938///
939/// ```
940/// # use proc_macro2::{Ident, Span};
941/// #
942/// # let ident = Ident::new("another_identifier", Span::call_site());
943/// #
944/// // Examine the ident as a string.
945/// let ident_string = ident.to_string();
946/// if ident_string.len() > 60 {
947///     println!("Very long identifier: {}", ident_string)
948/// }
949/// ```
950#[derive(Clone)]
951pub struct Ident {
952    inner: imp::Ident,
953    _marker: ProcMacroAutoTraits,
954}
955
956impl Ident {
957    fn _new(inner: imp::Ident) -> Self {
958        Ident {
959            inner,
960            _marker: MARKER,
961        }
962    }
963
964    /// Creates a new `Ident` with the given `string` as well as the specified
965    /// `span`.
966    ///
967    /// The `string` argument must be a valid identifier permitted by the
968    /// language, otherwise the function will panic.
969    ///
970    /// Note that `span`, currently in rustc, configures the hygiene information
971    /// for this identifier.
972    ///
973    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
974    /// hygiene meaning that identifiers created with this span will be resolved
975    /// as if they were written directly at the location of the macro call, and
976    /// other code at the macro call site will be able to refer to them as well.
977    ///
978    /// Later spans like `Span::def_site()` will allow to opt-in to
979    /// "definition-site" hygiene meaning that identifiers created with this
980    /// span will be resolved at the location of the macro definition and other
981    /// code at the macro call site will not be able to refer to them.
982    ///
983    /// Due to the current importance of hygiene this constructor, unlike other
984    /// tokens, requires a `Span` to be specified at construction.
985    ///
986    /// # Panics
987    ///
988    /// Panics if the input string is neither a keyword nor a legal variable
989    /// name. If you are not sure whether the string contains an identifier and
990    /// need to handle an error case, use
991    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
992    ///   style="padding-right:0;">syn::parse_str</code></a><code
993    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
994    /// rather than `Ident::new`.
995    #[track_caller]
996    pub fn new(string: &str, span: Span) -> Self {
997        Ident::_new(imp::Ident::new_checked(string, span.inner))
998    }
999
1000    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
1001    /// `string` argument must be a valid identifier permitted by the language
1002    /// (including keywords, e.g. `fn`). Keywords which are usable in path
1003    /// segments (e.g. `self`, `super`) are not supported, and will cause a
1004    /// panic.
1005    #[track_caller]
1006    pub fn new_raw(string: &str, span: Span) -> Self {
1007        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1008    }
1009
1010    /// Returns the span of this `Ident`.
1011    pub fn span(&self) -> Span {
1012        Span::_new(self.inner.span())
1013    }
1014
1015    /// Configures the span of this `Ident`, possibly changing its hygiene
1016    /// context.
1017    pub fn set_span(&mut self, span: Span) {
1018        self.inner.set_span(span.inner);
1019    }
1020}
1021
1022impl PartialEq for Ident {
1023    fn eq(&self, other: &Ident) -> bool {
1024        self.inner == other.inner
1025    }
1026}
1027
1028impl<T> PartialEq<T> for Ident
1029where
1030    T: ?Sized + AsRef<str>,
1031{
1032    fn eq(&self, other: &T) -> bool {
1033        self.inner == other
1034    }
1035}
1036
1037impl Eq for Ident {}
1038
1039impl PartialOrd for Ident {
1040    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1041        Some(self.cmp(other))
1042    }
1043}
1044
1045impl Ord for Ident {
1046    fn cmp(&self, other: &Ident) -> Ordering {
1047        self.to_string().cmp(&other.to_string())
1048    }
1049}
1050
1051impl Hash for Ident {
1052    fn hash<H: Hasher>(&self, hasher: &mut H) {
1053        self.to_string().hash(hasher);
1054    }
1055}
1056
1057/// Prints the identifier as a string that should be losslessly convertible back
1058/// into the same identifier.
1059impl Display for Ident {
1060    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1061        Display::fmt(&self.inner, f)
1062    }
1063}
1064
1065impl Debug for Ident {
1066    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1067        Debug::fmt(&self.inner, f)
1068    }
1069}
1070
1071/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1072/// byte character (`b'a'`), an integer or floating point number with or without
1073/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1074///
1075/// Boolean literals like `true` and `false` do not belong here, they are
1076/// `Ident`s.
1077#[derive(Clone)]
1078pub struct Literal {
1079    inner: imp::Literal,
1080    _marker: ProcMacroAutoTraits,
1081}
1082
1083macro_rules! suffixed_int_literals {
1084    ($($name:ident => $kind:ident,)*) => ($(
1085        /// Creates a new suffixed integer literal with the specified value.
1086        ///
1087        /// This function will create an integer like `1u32` where the integer
1088        /// value specified is the first part of the token and the integral is
1089        /// also suffixed at the end. Literals created from negative numbers may
1090        /// not survive roundtrips through `TokenStream` or strings and may be
1091        /// broken into two tokens (`-` and positive literal).
1092        ///
1093        /// Literals created through this method have the `Span::call_site()`
1094        /// span by default, which can be configured with the `set_span` method
1095        /// below.
1096        pub fn $name(n: $kind) -> Literal {
1097            Literal::_new(imp::Literal::$name(n))
1098        }
1099    )*)
1100}
1101
1102macro_rules! unsuffixed_int_literals {
1103    ($($name:ident => $kind:ident,)*) => ($(
1104        /// Creates a new unsuffixed integer literal with the specified value.
1105        ///
1106        /// This function will create an integer like `1` where the integer
1107        /// value specified is the first part of the token. No suffix is
1108        /// specified on this token, meaning that invocations like
1109        /// `Literal::i8_unsuffixed(1)` are equivalent to
1110        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1111        /// may not survive roundtrips through `TokenStream` or strings and may
1112        /// be broken into two tokens (`-` and positive literal).
1113        ///
1114        /// Literals created through this method have the `Span::call_site()`
1115        /// span by default, which can be configured with the `set_span` method
1116        /// below.
1117        pub fn $name(n: $kind) -> Literal {
1118            Literal::_new(imp::Literal::$name(n))
1119        }
1120    )*)
1121}
1122
1123impl Literal {
1124    fn _new(inner: imp::Literal) -> Self {
1125        Literal {
1126            inner,
1127            _marker: MARKER,
1128        }
1129    }
1130
1131    fn _new_fallback(inner: fallback::Literal) -> Self {
1132        Literal {
1133            inner: inner.into(),
1134            _marker: MARKER,
1135        }
1136    }
1137
1138    suffixed_int_literals! {
1139        u8_suffixed => u8,
1140        u16_suffixed => u16,
1141        u32_suffixed => u32,
1142        u64_suffixed => u64,
1143        u128_suffixed => u128,
1144        usize_suffixed => usize,
1145        i8_suffixed => i8,
1146        i16_suffixed => i16,
1147        i32_suffixed => i32,
1148        i64_suffixed => i64,
1149        i128_suffixed => i128,
1150        isize_suffixed => isize,
1151    }
1152
1153    unsuffixed_int_literals! {
1154        u8_unsuffixed => u8,
1155        u16_unsuffixed => u16,
1156        u32_unsuffixed => u32,
1157        u64_unsuffixed => u64,
1158        u128_unsuffixed => u128,
1159        usize_unsuffixed => usize,
1160        i8_unsuffixed => i8,
1161        i16_unsuffixed => i16,
1162        i32_unsuffixed => i32,
1163        i64_unsuffixed => i64,
1164        i128_unsuffixed => i128,
1165        isize_unsuffixed => isize,
1166    }
1167
1168    /// Creates a new unsuffixed floating-point literal.
1169    ///
1170    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1171    /// the float's value is emitted directly into the token but no suffix is
1172    /// used, so it may be inferred to be a `f64` later in the compiler.
1173    /// Literals created from negative numbers may not survive round-trips
1174    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1175    /// and positive literal).
1176    ///
1177    /// # Panics
1178    ///
1179    /// This function requires that the specified float is finite, for example
1180    /// if it is infinity or NaN this function will panic.
1181    pub fn f64_unsuffixed(f: f64) -> Literal {
1182        assert!(f.is_finite());
1183        Literal::_new(imp::Literal::f64_unsuffixed(f))
1184    }
1185
1186    /// Creates a new suffixed floating-point literal.
1187    ///
1188    /// This constructor will create a literal like `1.0f64` where the value
1189    /// specified is the preceding part of the token and `f64` is the suffix of
1190    /// the token. This token will always be inferred to be an `f64` in the
1191    /// compiler. Literals created from negative numbers may not survive
1192    /// round-trips through `TokenStream` or strings and may be broken into two
1193    /// tokens (`-` and positive literal).
1194    ///
1195    /// # Panics
1196    ///
1197    /// This function requires that the specified float is finite, for example
1198    /// if it is infinity or NaN this function will panic.
1199    pub fn f64_suffixed(f: f64) -> Literal {
1200        assert!(f.is_finite());
1201        Literal::_new(imp::Literal::f64_suffixed(f))
1202    }
1203
1204    /// Creates a new unsuffixed floating-point literal.
1205    ///
1206    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1207    /// the float's value is emitted directly into the token but no suffix is
1208    /// used, so it may be inferred to be a `f64` later in the compiler.
1209    /// Literals created from negative numbers may not survive round-trips
1210    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1211    /// and positive literal).
1212    ///
1213    /// # Panics
1214    ///
1215    /// This function requires that the specified float is finite, for example
1216    /// if it is infinity or NaN this function will panic.
1217    pub fn f32_unsuffixed(f: f32) -> Literal {
1218        assert!(f.is_finite());
1219        Literal::_new(imp::Literal::f32_unsuffixed(f))
1220    }
1221
1222    /// Creates a new suffixed floating-point literal.
1223    ///
1224    /// This constructor will create a literal like `1.0f32` where the value
1225    /// specified is the preceding part of the token and `f32` is the suffix of
1226    /// the token. This token will always be inferred to be an `f32` in the
1227    /// compiler. Literals created from negative numbers may not survive
1228    /// round-trips through `TokenStream` or strings and may be broken into two
1229    /// tokens (`-` and positive literal).
1230    ///
1231    /// # Panics
1232    ///
1233    /// This function requires that the specified float is finite, for example
1234    /// if it is infinity or NaN this function will panic.
1235    pub fn f32_suffixed(f: f32) -> Literal {
1236        assert!(f.is_finite());
1237        Literal::_new(imp::Literal::f32_suffixed(f))
1238    }
1239
1240    /// String literal.
1241    pub fn string(string: &str) -> Literal {
1242        Literal::_new(imp::Literal::string(string))
1243    }
1244
1245    /// Character literal.
1246    pub fn character(ch: char) -> Literal {
1247        Literal::_new(imp::Literal::character(ch))
1248    }
1249
1250    /// Byte character literal.
1251    pub fn byte_character(byte: u8) -> Literal {
1252        Literal::_new(imp::Literal::byte_character(byte))
1253    }
1254
1255    /// Byte string literal.
1256    pub fn byte_string(bytes: &[u8]) -> Literal {
1257        Literal::_new(imp::Literal::byte_string(bytes))
1258    }
1259
1260    /// C string literal.
1261    pub fn c_string(string: &CStr) -> Literal {
1262        Literal::_new(imp::Literal::c_string(string))
1263    }
1264
1265    /// Returns the span encompassing this literal.
1266    pub fn span(&self) -> Span {
1267        Span::_new(self.inner.span())
1268    }
1269
1270    /// Configures the span associated for this literal.
1271    pub fn set_span(&mut self, span: Span) {
1272        self.inner.set_span(span.inner);
1273    }
1274
1275    /// Returns a `Span` that is a subset of `self.span()` containing only
1276    /// the source bytes in range `range`. Returns `None` if the would-be
1277    /// trimmed span is outside the bounds of `self`.
1278    ///
1279    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1280    /// nightly-only. When called from within a procedural macro not using a
1281    /// nightly compiler, this method will always return `None`.
1282    ///
1283    /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
1284    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1285        self.inner.subspan(range).map(Span::_new)
1286    }
1287
1288    // Intended for the `quote!` macro to use when constructing a proc-macro2
1289    // token out of a macro_rules $:literal token, which is already known to be
1290    // a valid literal. This avoids reparsing/validating the literal's string
1291    // representation. This is not public API other than for quote.
1292    #[doc(hidden)]
1293    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1294        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1295    }
1296}
1297
1298impl FromStr for Literal {
1299    type Err = LexError;
1300
1301    fn from_str(repr: &str) -> Result<Self, LexError> {
1302        repr.parse().map(Literal::_new).map_err(|inner| LexError {
1303            inner,
1304            _marker: MARKER,
1305        })
1306    }
1307}
1308
1309impl Debug for Literal {
1310    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1311        Debug::fmt(&self.inner, f)
1312    }
1313}
1314
1315impl Display for Literal {
1316    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1317        Display::fmt(&self.inner, f)
1318    }
1319}
1320
1321/// Public implementation details for the `TokenStream` type, such as iterators.
1322pub mod token_stream {
1323    use crate::marker::{ProcMacroAutoTraits, MARKER};
1324    use crate::{imp, TokenTree};
1325    use core::fmt::{self, Debug};
1326
1327    pub use crate::TokenStream;
1328
1329    /// An iterator over `TokenStream`'s `TokenTree`s.
1330    ///
1331    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1332    /// delimited groups, and returns whole groups as token trees.
1333    #[derive(Clone)]
1334    pub struct IntoIter {
1335        inner: imp::TokenTreeIter,
1336        _marker: ProcMacroAutoTraits,
1337    }
1338
1339    impl Iterator for IntoIter {
1340        type Item = TokenTree;
1341
1342        fn next(&mut self) -> Option<TokenTree> {
1343            self.inner.next()
1344        }
1345
1346        fn size_hint(&self) -> (usize, Option<usize>) {
1347            self.inner.size_hint()
1348        }
1349    }
1350
1351    impl Debug for IntoIter {
1352        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1353            f.write_str("TokenStream ")?;
1354            f.debug_list().entries(self.clone()).finish()
1355        }
1356    }
1357
1358    impl IntoIterator for TokenStream {
1359        type Item = TokenTree;
1360        type IntoIter = IntoIter;
1361
1362        fn into_iter(self) -> IntoIter {
1363            IntoIter {
1364                inner: self.inner.into_iter(),
1365                _marker: MARKER,
1366            }
1367        }
1368    }
1369}