scheduler/sync/simple_latch.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::Arc;
use nix::errno::Errno;
/// A simple reusable latch. Multiple waiters can wait for the latch to open. After opening the
/// latch with [`open()`](Self::open), you must not open the latch again until all waiters have
/// waited with [`wait()`](LatchWaiter::wait) on the latch. In other words, you must not call
/// `open()` multiple times without making sure that all waiters have successfully returned from
/// `wait()` each time. This typically requires some other synchronization to make sure that the
/// waiters have waited. If the latch and its waiters aren't kept in sync, the waiters will usually
/// panic, but in some cases may behave incorrectly[^note].
///
/// [^note]: Since this latch uses a 32-bit wrapping integer to track the positions of the latch and
/// its waiters, calling `open()` `u32::MAX + 1` times without allowing the waiters to wait will
/// behave as if you did not call `open()` at all.
///
/// The latch uses release-acquire ordering, so any changes made before an `open()` should be
/// visible in other threads after a `wait()` returns.
#[derive(Debug)]
pub struct Latch {
/// The generation of the latch.
latch_gen: Arc<AtomicU32>,
}
/// A waiter that waits for the latch to open. A waiter for a latch can be created with
/// [`waiter()`](Latch::waiter). Cloning a waiter will create a new waiter with the same
/// state/generation as the existing waiter.
#[derive(Debug, Clone)]
pub struct LatchWaiter {
/// The generation of this waiter.
gen: u32,
/// The read-only generation of the latch.
latch_gen: Arc<AtomicU32>,
/// Should we sched_yield in a spinloop indefinitely rather than futex-wait?
spin_yield: bool,
}
impl Latch {
/// Create a new latch.
pub fn new() -> Self {
Self {
latch_gen: Arc::new(AtomicU32::new(0)),
}
}
/// Get a new waiter for this latch. The new waiter will have the same generation as the latch,
/// meaning that a single [`wait()`](LatchWaiter::wait) will block the waiter until the next
/// latch [`open()`](Self::open).
///
/// If `spin_yield` is `true`, the waiter will `sched_yield` in a spinloop indefinitely. If
/// `spin_yield` is `false`, the waiter will futex-wait. Setting to `true` may improve
/// performance in some workloads.
pub fn waiter(&mut self, spin_yield: bool) -> LatchWaiter {
LatchWaiter {
// we're the only one who can mutate the atomic,
// so there's no race condition here
gen: self.latch_gen.load(Ordering::Relaxed),
latch_gen: Arc::clone(&self.latch_gen),
spin_yield,
}
}
/// Open the latch.
pub fn open(&mut self) {
// the addition is wrapping
self.latch_gen.fetch_add(1, Ordering::Release);
libc_futex(
&self.latch_gen,
libc::FUTEX_WAKE | libc::FUTEX_PRIVATE_FLAG,
// the man page says to use INT_MAX which is weird since this is a u32, but the kernel
// `do_futex` function implicitly casts this to an int when passing it to `futex_wake`
// (as of linux 6.6.8), so this seems like the right value to use
i32::MAX as u32,
None,
None,
0,
)
.expect("FUTEX_WAKE failed");
}
}
impl Default for Latch {
fn default() -> Self {
Self::new()
}
}
impl LatchWaiter {
/// Wait for the latch to open.
pub fn wait(&mut self) {
loop {
let latch_gen = self.latch_gen.load(Ordering::Acquire);
match latch_gen.wrapping_sub(self.gen) {
// the latch has been opened and we can advance to the next generation
1 => break,
// the latch has not been opened and we're at the same generation
0 => {}
// the latch has been opened multiple times and we haven't been kept in sync
_ => panic!("Latch has been opened multiple times without us waiting"),
}
if !self.spin_yield {
let rv = libc_futex(
&self.latch_gen,
libc::FUTEX_WAIT | libc::FUTEX_PRIVATE_FLAG,
latch_gen,
None,
None,
0,
);
assert!(
matches!(rv, Ok(_) | Err(Errno::EAGAIN | Errno::EINTR)),
"FUTEX_WAIT failed with {rv:?}"
);
} else {
// we don't know if a pause instruction is beneficial or not here, but it doesn't
// seem to hurt performance
// https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-9/pause-intrinsic.html
std::hint::spin_loop();
std::thread::yield_now();
}
}
self.gen = self.gen.wrapping_add(1);
}
}
// Perform a futex operation using libc. Miri only understands futex syscalls made through the
// [`libc::syscall`] function so we need to use it here. I don't see any reason to mark this as
// "unsafe", but I didn't look through all of the possible futex operations.
pub fn libc_futex(
uaddr: &AtomicU32,
op: core::ffi::c_int,
val: u32,
utime: Option<&libc::timespec>,
uaddr2: Option<&AtomicU32>,
val3: u32,
) -> Result<core::ffi::c_int, Errno> {
let uaddr: *mut u32 = uaddr.as_ptr();
let utime: *const libc::timespec = utime
.map(std::ptr::from_ref)
.unwrap_or(core::ptr::null_mut());
let uaddr2: *mut u32 = uaddr2
.map(AtomicU32::as_ptr)
.unwrap_or(core::ptr::null_mut());
let rv = unsafe { libc::syscall(libc::SYS_futex, uaddr, op, val, utime, uaddr2, val3) };
if rv >= 0 {
// the linux x86-64 syscall implementation returns an int so I don't think this should ever
// fail
Ok(rv.try_into().expect("futex() returned invalid int"))
} else {
let errno = unsafe { *libc::__errno_location() };
debug_assert_eq!(rv, -1);
Err(Errno::from_raw(errno))
}
}
#[cfg(test)]
mod tests {
use std::thread::sleep;
use std::time::{Duration, Instant};
use atomic_refcell::AtomicRefCell;
use super::*;
#[test]
fn test_simple() {
let mut latch = Latch::new();
let mut waiter = latch.waiter(false);
latch.open();
waiter.wait();
latch.open();
waiter.wait();
latch.open();
waiter.wait();
}
#[test]
#[should_panic]
fn test_multiple_open() {
let mut latch = Latch::new();
let mut waiter = latch.waiter(false);
latch.open();
waiter.wait();
latch.open();
latch.open();
// this should panic
waiter.wait();
}
#[test]
fn test_blocking() {
let mut latch = Latch::new();
let mut waiter = latch.waiter(false);
let t = std::thread::spawn(move || {
let start = Instant::now();
waiter.wait();
start.elapsed()
});
let sleep_duration = Duration::from_millis(200);
sleep(sleep_duration);
latch.open();
let wait_duration = t.join().unwrap();
let threshold = Duration::from_millis(40);
assert!(wait_duration > sleep_duration - threshold);
assert!(wait_duration < sleep_duration + threshold);
}
#[test]
fn test_clone() {
let mut latch = Latch::new();
let mut waiter = latch.waiter(false);
latch.open();
waiter.wait();
latch.open();
waiter.wait();
// new waiter should have the same generation
let mut waiter_2 = waiter.clone();
latch.open();
waiter.wait();
waiter_2.wait();
}
#[test]
fn test_ping_pong() {
let mut latch_1 = Latch::new();
let mut latch_2 = Latch::new();
let mut waiter_1 = latch_1.waiter(true);
let mut waiter_2 = latch_2.waiter(false);
let counter = Arc::new(AtomicRefCell::new(0));
let counter_clone = Arc::clone(&counter);
fn latch_loop(
latch: &mut Latch,
waiter: &mut LatchWaiter,
counter: &Arc<AtomicRefCell<usize>>,
iterations: usize,
) {
for _ in 0..iterations {
waiter.wait();
*counter.borrow_mut() += 1;
latch.open();
}
}
let t = std::thread::spawn(move || {
latch_loop(&mut latch_2, &mut waiter_1, &counter_clone, 100);
});
latch_1.open();
latch_loop(&mut latch_1, &mut waiter_2, &counter, 100);
t.join().unwrap();
assert_eq!(*counter.borrow(), 200);
}
}