scheduler/
thread_per_host.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//! A thread-per-host host scheduler.

// unsafe code should be isolated to the thread pool
#![forbid(unsafe_code)]

use std::cell::RefCell;
use std::fmt::Debug;
use std::sync::Mutex;
use std::thread::LocalKey;

use crate::pools::bounded::{ParallelismBoundedThreadPool, TaskRunner};
use crate::CORE_AFFINITY;

pub trait Host: Debug + Send + 'static {}
impl<T> Host for T where T: Debug + Send + 'static {}

/// A host scheduler.
pub struct ThreadPerHostSched<HostType: Host> {
    /// The thread pool.
    pool: ParallelismBoundedThreadPool,
    /// Thread-local storage where a thread can store its host.
    host_storage: &'static LocalKey<RefCell<Option<HostType>>>,
}

impl<HostType: Host> ThreadPerHostSched<HostType> {
    /// A new host scheduler with logical processors that are pinned to the provided OS processors.
    /// Each logical processor is assigned many threads, and each thread is given a single host. The
    /// number of threads created will be the length of `hosts`.
    ///
    /// An empty `host_storage` for thread-local storage is required for each thread to have
    /// efficient access to its host. A panic may occur if `host_storage` is not `None`, or if it is
    /// borrowed while the scheduler is in use.
    pub fn new<T>(
        cpu_ids: &[Option<u32>],
        host_storage: &'static LocalKey<RefCell<Option<HostType>>>,
        hosts: T,
    ) -> Self
    where
        T: IntoIterator<Item = HostType, IntoIter: ExactSizeIterator>,
    {
        let hosts = hosts.into_iter();

        let mut pool = ParallelismBoundedThreadPool::new(cpu_ids, hosts.len(), "shadow-worker");

        // for determinism, threads will take hosts from a vec rather than a queue
        let hosts: Vec<Mutex<Option<HostType>>> = hosts.map(|x| Mutex::new(Some(x))).collect();

        // have each thread take a host and store it as a thread-local
        pool.scope(|s| {
            s.run(|t| {
                host_storage.with(|x| {
                    assert!(x.borrow().is_none());
                    let host = hosts[t.thread_idx].lock().unwrap().take().unwrap();
                    *x.borrow_mut() = Some(host);
                });
            });
        });

        Self { pool, host_storage }
    }

    /// See [`crate::Scheduler::parallelism`].
    pub fn parallelism(&self) -> usize {
        self.pool.num_processors()
    }

    /// See [`crate::Scheduler::scope`].
    pub fn scope<'scope>(
        &'scope mut self,
        f: impl for<'a> FnOnce(SchedulerScope<'a, 'scope, HostType>) + 'scope,
    ) {
        let host_storage = self.host_storage;
        self.pool.scope(move |s| {
            let sched_scope = SchedulerScope {
                runner: s,
                host_storage,
            };

            (f)(sched_scope);
        });
    }

    /// See [`crate::Scheduler::join`].
    pub fn join(mut self) {
        let hosts: Vec<Mutex<Option<HostType>>> = (0..self.pool.num_threads())
            .map(|_| Mutex::new(None))
            .collect();

        // collect all of the hosts from the threads
        self.pool.scope(|s| {
            s.run(|t| {
                self.host_storage.with(|x| {
                    let host = x.borrow_mut().take().unwrap();
                    *hosts[t.thread_idx].lock().unwrap() = Some(host);
                });
            });
        });

        self.pool.join();
    }
}

/// A wrapper around the work pool's scoped runner.
pub struct SchedulerScope<'pool, 'scope, HostType: Host> {
    /// The work pool's scoped runner.
    runner: TaskRunner<'pool, 'scope>,
    /// Thread-local storage where a thread can retrieve its host.
    host_storage: &'static LocalKey<RefCell<Option<HostType>>>,
}

impl<'pool, 'scope, HostType: Host> SchedulerScope<'pool, 'scope, HostType> {
    /// See [`crate::SchedulerScope::run`].
    pub fn run(self, f: impl Fn(usize) + Sync + Send + 'scope) {
        self.runner.run(move |task_context| {
            // update the thread-local core affinity
            if let Some(cpu_id) = task_context.cpu_id {
                CORE_AFFINITY.with(|x| x.set(Some(cpu_id)));
            }

            (f)(task_context.thread_idx)
        });
    }

    /// See [`crate::SchedulerScope::run_with_hosts`].
    pub fn run_with_hosts(self, f: impl Fn(usize, &mut HostIter<HostType>) + Send + Sync + 'scope) {
        self.runner.run(move |task_context| {
            // update the thread-local core affinity
            if let Some(cpu_id) = task_context.cpu_id {
                CORE_AFFINITY.with(|x| x.set(Some(cpu_id)));
            }

            self.host_storage.with(|host| {
                let mut host = host.borrow_mut();

                let mut host_iter = HostIter { host: host.take() };

                f(task_context.thread_idx, &mut host_iter);

                host.replace(host_iter.host.take().unwrap());
            });
        });
    }

    /// See [`crate::SchedulerScope::run_with_data`].
    pub fn run_with_data<T>(
        self,
        data: &'scope [T],
        f: impl Fn(usize, &mut HostIter<HostType>, &T) + Send + Sync + 'scope,
    ) where
        T: Sync,
    {
        self.runner.run(move |task_context| {
            // update the thread-local core affinity
            if let Some(cpu_id) = task_context.cpu_id {
                CORE_AFFINITY.with(|x| x.set(Some(cpu_id)));
            }

            let this_elem = &data[task_context.processor_idx];

            self.host_storage.with(|host| {
                let mut host = host.borrow_mut();

                let mut host_iter = HostIter { host: host.take() };

                f(task_context.thread_idx, &mut host_iter, this_elem);

                host.replace(host_iter.host.unwrap());
            });
        });
    }
}

/// Supports iterating over all hosts assigned to this thread. For this thread-per-host scheduler,
/// there will only ever be one host per thread.
pub struct HostIter<HostType: Host> {
    host: Option<HostType>,
}

impl<HostType: Host> HostIter<HostType> {
    /// See [`crate::HostIter::for_each`].
    pub fn for_each<F>(&mut self, mut f: F)
    where
        F: FnMut(HostType) -> HostType,
    {
        let host = self.host.take().unwrap();
        self.host.replace(f(host));
    }
}

#[cfg(any(test, doctest))]
mod tests {
    use std::cell::RefCell;
    use std::sync::atomic::{AtomicU32, Ordering};

    use super::*;

    #[derive(Debug)]
    struct TestHost {}

    std::thread_local! {
        static SCHED_HOST_STORAGE: RefCell<Option<TestHost>> = const { RefCell::new(None) };
    }

    #[test]
    fn test_parallelism() {
        let hosts = [(); 5].map(|_| TestHost {});
        let sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);

        assert_eq!(sched.parallelism(), 2);

        sched.join();
    }

    #[test]
    fn test_no_join() {
        let hosts = [(); 5].map(|_| TestHost {});
        let _sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);
    }

    #[test]
    #[should_panic]
    fn test_panic() {
        let hosts = [(); 5].map(|_| TestHost {});
        let mut sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);

        sched.scope(|s| {
            s.run(|x| {
                if x == 1 {
                    panic!();
                }
            });
        });
    }

    #[test]
    fn test_run() {
        let hosts = [(); 5].map(|_| TestHost {});
        let mut sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);

        let counter = AtomicU32::new(0);

        for _ in 0..3 {
            sched.scope(|s| {
                s.run(|_| {
                    counter.fetch_add(1, Ordering::SeqCst);
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 5 * 3);

        sched.join();
    }

    #[test]
    fn test_run_with_hosts() {
        let hosts = [(); 5].map(|_| TestHost {});
        let mut sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);

        let counter = AtomicU32::new(0);

        for _ in 0..3 {
            sched.scope(|s| {
                s.run_with_hosts(|_, hosts| {
                    hosts.for_each(|host| {
                        counter.fetch_add(1, Ordering::SeqCst);
                        host
                    });
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 5 * 3);

        sched.join();
    }

    #[test]
    fn test_run_with_data() {
        let hosts = [(); 5].map(|_| TestHost {});
        let mut sched: ThreadPerHostSched<TestHost> =
            ThreadPerHostSched::new(&[None, None], &SCHED_HOST_STORAGE, hosts);

        let data = vec![0u32; sched.parallelism()];
        let data: Vec<_> = data.into_iter().map(std::sync::Mutex::new).collect();

        for _ in 0..3 {
            sched.scope(|s| {
                s.run_with_data(&data, |_, hosts, elem| {
                    let mut elem = elem.lock().unwrap();
                    hosts.for_each(|host| {
                        *elem += 1;
                        host
                    });
                });
            });
        }

        let sum: u32 = data.into_iter().map(|x| x.into_inner().unwrap()).sum();
        assert_eq!(sum, 5 * 3);

        sched.join();
    }
}