shadow_rs/host/descriptor/descriptor_table.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
use std::collections::{BTreeSet, HashMap};
use log::*;
use shadow_shim_helper_rs::explicit_drop::ExplicitDrop;
use shadow_shim_helper_rs::syscall_types::SyscallReg;
use crate::host::descriptor::Descriptor;
use crate::host::host::Host;
use crate::utility::callback_queue::CallbackQueue;
use crate::utility::ObjectCounter;
/// POSIX requires fds to be assigned as `libc::c_int`, so we can't allow any fds larger than this.
pub const FD_MAX: u32 = i32::MAX as u32;
/// Map of file handles to file descriptors. Typically owned by a
/// [`Thread`][crate::host::thread::Thread].
#[derive(Clone)]
pub struct DescriptorTable {
descriptors: HashMap<DescriptorHandle, Descriptor>,
// Indices less than `next_index` known to be available.
available_indices: BTreeSet<u32>,
// Lowest index not in `available_indices` that *might* be available. We still need to verify
// availability in `descriptors`, though.
next_index: u32,
_counter: ObjectCounter,
}
impl DescriptorTable {
pub fn new() -> Self {
DescriptorTable {
descriptors: HashMap::new(),
available_indices: BTreeSet::new(),
next_index: 0,
_counter: ObjectCounter::new("DescriptorTable"),
}
}
/// Add the descriptor at an unused index, and return the index. If the descriptor could not be
/// added, the descriptor is returned in the `Err`.
fn add(
&mut self,
descriptor: Descriptor,
min_index: DescriptorHandle,
) -> Result<DescriptorHandle, Descriptor> {
let idx = if let Some(idx) = self.available_indices.range(min_index.val()..).next() {
// Un-borrow from `available_indices`.
let idx = *idx;
// Take from `available_indices`
trace!("Reusing available index {}", idx);
self.available_indices.remove(&idx);
idx
} else {
// Start our search at either the next likely available index or the minimum index,
// whichever is larger.
let mut idx = std::cmp::max(self.next_index, min_index.val());
// Check if this index out of range.
if idx > FD_MAX {
return Err(descriptor);
}
// Only update next_index if we started at it, otherwise there may be other
// available indexes lower than idx.
let should_update_next_index = idx == self.next_index;
// Skip past any indexes that are in use. This can happen after
// calling `set` with a value greater than `next_index`.
while self
.descriptors
.contains_key(&DescriptorHandle::new(idx).unwrap())
{
trace!("Skipping past in-use index {}", idx);
// Check if the next index is out of range.
if idx >= FD_MAX {
return Err(descriptor);
}
// Won't overflow because of the check above.
idx += 1;
}
if should_update_next_index {
self.next_index = idx + 1;
}
// Take the next index.
trace!("Using index {}", idx);
idx
};
let idx = DescriptorHandle::new(idx).unwrap();
let prev = self.descriptors.insert(idx, descriptor);
assert!(prev.is_none(), "Already a descriptor at {}", idx);
Ok(idx)
}
// Call after inserting to `available_indices`, to free any that are contiguous
// with `next_index`.
fn trim_tail(&mut self) {
while let Some(last_in_available) = self.available_indices.iter().next_back().copied() {
if (last_in_available + 1) == self.next_index {
// Last entry in available_indices is adjacent to next_index.
// We can merge them, freeing an entry in `available_indices`.
self.next_index -= 1;
self.available_indices.remove(&last_in_available);
} else {
break;
}
}
}
/// Get the descriptor at `idx`, if any.
pub fn get(&self, idx: DescriptorHandle) -> Option<&Descriptor> {
self.descriptors.get(&idx)
}
/// Get the descriptor at `idx`, if any.
pub fn get_mut(&mut self, idx: DescriptorHandle) -> Option<&mut Descriptor> {
self.descriptors.get_mut(&idx)
}
/// Insert a descriptor at `index`. If a descriptor is already present at that index, it is
/// unregistered from that index and returned.
#[must_use]
fn set(&mut self, index: DescriptorHandle, descriptor: Descriptor) -> Option<Descriptor> {
// We ensure the index is no longer in `self.available_indices`. We *don't* ensure
// `self.next_index` is > `index`, since that'd require adding the indices in between to
// `self.available_indices`. It uses less memory and is no more expensive to iterate when
// *using* `self.available_indices` instead.
self.available_indices.remove(&index.val());
let prev = self.descriptors.insert(index, descriptor);
if prev.is_some() {
trace!("Overwriting index {}", index);
} else {
trace!("Setting to unused index {}", index);
}
prev
}
/// Register a descriptor and return its fd handle. Equivalent to
/// [`register_descriptor_with_min_fd(desc, 0)`][Self::register_descriptor_with_min_fd]. If the
/// descriptor could not be added, the descriptor is returned in the `Err`.
pub fn register_descriptor(
&mut self,
desc: Descriptor,
) -> Result<DescriptorHandle, Descriptor> {
const ZERO: DescriptorHandle = match DescriptorHandle::new(0) {
Some(x) => x,
None => unreachable!(),
};
self.add(desc, ZERO)
}
/// Register a descriptor and return its fd handle. If the descriptor could not be added, the
/// descriptor is returned in the `Err`.
pub fn register_descriptor_with_min_fd(
&mut self,
desc: Descriptor,
min_fd: DescriptorHandle,
) -> Result<DescriptorHandle, Descriptor> {
self.add(desc, min_fd)
}
/// Register a descriptor with a given fd handle and return the descriptor that it replaced.
#[must_use]
pub fn register_descriptor_with_fd(
&mut self,
desc: Descriptor,
new_fd: DescriptorHandle,
) -> Option<Descriptor> {
self.set(new_fd, desc)
}
/// Deregister the descriptor with the given fd handle and return it.
#[must_use]
pub fn deregister_descriptor(&mut self, fd: DescriptorHandle) -> Option<Descriptor> {
let maybe_descriptor = self.descriptors.remove(&fd);
self.available_indices.insert(fd.val());
self.trim_tail();
maybe_descriptor
}
/// Remove and return all descriptors.
pub fn remove_all(&mut self) -> impl Iterator<Item = Descriptor> {
// reset the descriptor table
let old_self = std::mem::replace(self, Self::new());
// return the old descriptors
old_self.descriptors.into_values()
}
/// Remove and return all descriptors in the range. If you want to remove all descriptors, you
/// should use [`remove_all`](Self::remove_all).
pub fn remove_range(
&mut self,
range: impl std::ops::RangeBounds<DescriptorHandle>,
) -> impl Iterator<Item = Descriptor> {
// This code is not very efficient but it shouldn't be called often, so it should be fine
// for now. If we wanted something more efficient, we'd need to redesign the descriptor
// table to not use a hash map.
let fds: Vec<_> = self
.iter()
.filter_map(|(fd, _)| range.contains(fd).then_some(*fd))
.collect();
let mut descriptors = Vec::with_capacity(fds.len());
for fd in fds {
descriptors.push(self.deregister_descriptor(fd).unwrap());
}
descriptors.into_iter()
}
pub fn iter(&self) -> impl Iterator<Item = (&DescriptorHandle, &Descriptor)> {
self.descriptors.iter()
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&DescriptorHandle, &mut Descriptor)> {
self.descriptors.iter_mut()
}
}
impl Default for DescriptorTable {
fn default() -> Self {
Self::new()
}
}
impl ExplicitDrop for DescriptorTable {
type ExplicitDropParam = Host;
type ExplicitDropResult = ();
fn explicit_drop(mut self, host: &Host) {
// Drop all descriptors using a callback queue.
//
// Doing this explicitly instead of letting `DescriptorTable`'s `Drop`
// implementation implicitly close these individually is a performance
// optimization so that all descriptors are closed before any of their
// callbacks run.
let descriptors = self.remove_all();
CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
for desc in descriptors {
desc.close(host, cb_queue);
}
});
}
}
/// A handle for a file descriptor.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct DescriptorHandle(u32);
impl DescriptorHandle {
/// Returns `Some` if `fd` is less than [`FD_MAX`]. Can be used in `const` contexts.
pub const fn new(fd: u32) -> Option<Self> {
if fd > FD_MAX {
return None;
}
Some(DescriptorHandle(fd))
}
pub fn val(&self) -> u32 {
self.0
}
}
impl std::fmt::Display for DescriptorHandle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl From<DescriptorHandle> for u32 {
fn from(x: DescriptorHandle) -> u32 {
x.0
}
}
impl From<DescriptorHandle> for u64 {
fn from(x: DescriptorHandle) -> u64 {
x.0.into()
}
}
impl From<DescriptorHandle> for i32 {
fn from(x: DescriptorHandle) -> i32 {
const { assert!(FD_MAX <= i32::MAX as u32) };
// the constructor makes sure this won't panic
x.0.try_into().unwrap()
}
}
impl From<DescriptorHandle> for i64 {
fn from(x: DescriptorHandle) -> i64 {
x.0.into()
}
}
impl From<DescriptorHandle> for SyscallReg {
fn from(x: DescriptorHandle) -> SyscallReg {
x.0.into()
}
}
impl TryFrom<u32> for DescriptorHandle {
type Error = DescriptorHandleError;
fn try_from(x: u32) -> Result<Self, Self::Error> {
DescriptorHandle::new(x).ok_or(DescriptorHandleError())
}
}
impl TryFrom<u64> for DescriptorHandle {
// use the same error type as the conversion from u32
type Error = <DescriptorHandle as TryFrom<u32>>::Error;
fn try_from(x: u64) -> Result<Self, Self::Error> {
u32::try_from(x)
.or(Err(DescriptorHandleError()))?
.try_into()
}
}
impl TryFrom<i32> for DescriptorHandle {
type Error = DescriptorHandleError;
fn try_from(x: i32) -> Result<Self, Self::Error> {
x.try_into()
.ok()
.and_then(DescriptorHandle::new)
.ok_or(DescriptorHandleError())
}
}
impl TryFrom<i64> for DescriptorHandle {
// use the same error type as the conversion from i32
type Error = <DescriptorHandle as TryFrom<i32>>::Error;
fn try_from(x: i64) -> Result<Self, Self::Error> {
i32::try_from(x)
.or(Err(DescriptorHandleError()))?
.try_into()
}
}
/// The handle is not valid.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct DescriptorHandleError();
impl std::fmt::Display for DescriptorHandleError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Not a valid descriptor handle")
}
}
impl std::error::Error for DescriptorHandleError {}