1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use std::io::Write;
use std::sync::{Arc, Weak};

use atomic_refcell::AtomicRefCell;
use linux_api::errno::Errno;
use linux_api::ioctls::IoctlRequest;
use linux_api::posix_types::kernel_off_t;
use shadow_shim_helper_rs::{
    emulated_time::EmulatedTime, simulation_time::SimulationTime, syscall_types::ForeignPtr,
};

use crate::cshadow as c;
use crate::host::descriptor::listener::{StateEventSource, StateListenHandle, StateListenerFilter};
use crate::host::descriptor::{FileMode, FileSignals, FileState, FileStatus};
use crate::host::host::Host;
use crate::host::memory_manager::MemoryManager;
use crate::host::syscall::io::{IoVec, IoVecWriter};
use crate::host::syscall::types::{SyscallError, SyscallResult};
use crate::host::timer::Timer;
use crate::utility::callback_queue::CallbackQueue;
use crate::utility::HostTreePointer;

pub struct TimerFd {
    timer: Timer,
    event_source: StateEventSource,
    status: FileStatus,
    state: FileState,
    // Should only be used by `OpenFile` to make sure there is only ever one `OpenFile` instance for
    // this file,
    has_open_file: bool,
}

impl TimerFd {
    /// Creates a new [`TimerFd`] object that internally sets up a [`Timer`] that can be waited on
    /// with poll, select, and epoll, enabling support for timerfd_create(2).
    ///
    /// We wrap the new [`TimerFd`] in an [`Arc<AtomicRefCell>`] because we need to use a weak
    /// reference to internally support setting up callback functions that reference the [`TimerFd`]
    /// on timer expiration.
    pub fn new(status: FileStatus) -> Arc<AtomicRefCell<Self>> {
        // We need a circular reference here, so that the inner Timer can refer back to the outer
        // TimerFd when executing a callback that will mutate the TimerFd when the timer expires.
        Arc::new_cyclic(|weak| {
            let weak_cloned = weak.clone();
            AtomicRefCell::new(Self {
                timer: Timer::new(move |_host| Self::timer_expired(&weak_cloned)),
                event_source: StateEventSource::new(),
                state: FileState::ACTIVE,
                status,
                has_open_file: false,
            })
        })
    }

    /// Called by the inner [`Timer`] when a timer expiration occurs.
    fn timer_expired(timerfd_weak: &Weak<AtomicRefCell<TimerFd>>) {
        let Some(timerfd) = timerfd_weak.upgrade() else {
            log::trace!("Expired TimerFd no longer exists.");
            return;
        };

        // The TimerFd may have become readable now that a timer expired. We use the CallbackQueue
        // here to make sure that any listeners that need to wake up and handle a readable TimerFd
        // are not invoked until after we release the borrow.
        CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
            timerfd.borrow_mut().refresh_state(cb_queue);
        });
    }

    /// Returns the number of expirations that have occured since the timer was last armed.
    fn get_timer_count(&self) -> u64 {
        self.timer.expiration_count()
    }

    /// Returns the relative duration until the next expiration event occurs if the timer is armed,
    /// and `None` if the timer is disarmed.
    pub fn get_timer_remaining(&self) -> Option<SimulationTime> {
        self.timer.remaining_time()
    }

    /// Returns the relative duration over which the timer has been configured to periodically
    /// expire, or `None` if the timer is configured to expire only once.
    pub fn get_timer_interval(&self) -> Option<SimulationTime> {
        self.timer.expire_interval()
    }

    /// Arm the timer by setting its expiration time and interval, enabling support for
    /// timerfd_settime(2). The readable state of the [`TimerFd`] is updated as appropriate.
    pub fn arm_timer(
        &mut self,
        host: &Host,
        expire_time: EmulatedTime,
        interval: Option<SimulationTime>,
        cb_queue: &mut CallbackQueue,
    ) {
        // Make sure to update our READABLE status.
        self.timer.arm(host, expire_time, interval);
        self.refresh_state(cb_queue);
    }

    /// Disarm the timer so that it no longer fires expiration events, enabling support for
    /// timerfd_settime(2). The readable state of the [`TimerFd`] is updated as appropriate.
    pub fn disarm_timer(&mut self, cb_queue: &mut CallbackQueue) {
        // Make sure to update our READABLE status.
        self.timer.disarm();
        self.refresh_state(cb_queue);
    }

    pub fn status(&self) -> FileStatus {
        self.status
    }

    pub fn set_status(&mut self, status: FileStatus) {
        self.status = status;
    }

    pub fn mode(&self) -> FileMode {
        FileMode::READ
    }

    pub fn has_open_file(&self) -> bool {
        self.has_open_file
    }

    pub fn supports_sa_restart(&self) -> bool {
        false
    }

    pub fn set_has_open_file(&mut self, val: bool) {
        self.has_open_file = val;
    }

    pub fn readv(
        &mut self,
        iovs: &[IoVec],
        offset: Option<kernel_off_t>,
        _flags: std::ffi::c_int,
        mem: &mut MemoryManager,
        cb_queue: &mut CallbackQueue,
    ) -> Result<isize, SyscallError> {
        // TimerFds don't support seeking
        if offset.is_some() {
            return Err(Errno::ESPIPE.into());
        }

        // timerfd_create(2): "read(2) returns an unsigned 8-byte integer containing the number of
        // expirations that have occurred."
        const NUM_BYTES: usize = 8;

        let len: usize = iovs.iter().map(|x| x.len).sum();

        // This check doesn't guarantee that we can write all bytes since the stream length is only
        // a hint.
        if len < NUM_BYTES {
            log::trace!("Reading from TimerFd requires a buffer of at least {NUM_BYTES} bytes",);
            return Err(Errno::EINVAL.into());
        }

        let expiration_count = self.timer.consume_expiration_count();

        if expiration_count == 0 {
            log::trace!("TimerFd expiration count is 0 and cannot be read right now");
            return Err(Errno::EWOULDBLOCK.into());
        }

        let mut writer = IoVecWriter::new(iovs, mem);
        let to_write: [u8; NUM_BYTES] = expiration_count.to_ne_bytes();
        writer.write_all(&to_write)?;

        // We just read the expiration counter and so are not readable anymore.
        self.refresh_state(cb_queue);

        Ok(NUM_BYTES.try_into().unwrap())
    }

    pub fn writev(
        &mut self,
        _iovs: &[IoVec],
        _offset: Option<kernel_off_t>,
        _flags: std::ffi::c_int,
        _mem: &mut MemoryManager,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<isize, SyscallError> {
        // TimerFds don't support writing.
        Err(Errno::EINVAL.into())
    }

    pub fn close(&mut self, cb_queue: &mut CallbackQueue) -> Result<(), SyscallError> {
        // Set the closed flag and remove the active and readable flags.
        self.update_state(
            FileState::CLOSED | FileState::ACTIVE | FileState::READABLE,
            FileState::CLOSED,
            FileSignals::empty(),
            cb_queue,
        );

        Ok(())
    }

    pub fn ioctl(
        &mut self,
        request: IoctlRequest,
        _arg_ptr: ForeignPtr<()>,
        _memory_manager: &mut MemoryManager,
    ) -> SyscallResult {
        // The only timerfd-specific ioctl request is for `TFD_IOC_SET_TICKS`, which is available
        // since Linux 3.17 but only if the kernel was configured with `CONFIG_CHECKPOINT_RESTORE`.
        // See timerfd_create(2) for more details.
        warn_once_then_debug!("We do not yet handle ioctl request {request:?} on TimerFds");
        Err(Errno::EINVAL.into())
    }

    pub fn stat(&self) -> Result<linux_api::stat::stat, SyscallError> {
        warn_once_then_debug!("We do not yet handle stat calls on timerfds");
        Err(Errno::EINVAL.into())
    }

    pub fn add_listener(
        &mut self,
        monitoring_state: FileState,
        monitoring_signals: FileSignals,
        filter: StateListenerFilter,
        notify_fn: impl Fn(FileState, FileState, FileSignals, &mut CallbackQueue)
            + Send
            + Sync
            + 'static,
    ) -> StateListenHandle {
        self.event_source
            .add_listener(monitoring_state, monitoring_signals, filter, notify_fn)
    }

    pub fn add_legacy_listener(&mut self, ptr: HostTreePointer<c::StatusListener>) {
        self.event_source.add_legacy_listener(ptr);
    }

    pub fn remove_legacy_listener(&mut self, ptr: *mut c::StatusListener) {
        self.event_source.remove_legacy_listener(ptr);
    }

    pub fn state(&self) -> FileState {
        self.state
    }

    fn refresh_state(&mut self, cb_queue: &mut CallbackQueue) {
        if self.state.contains(FileState::CLOSED) {
            return;
        }

        let mut new_state = FileState::empty();

        // Set the descriptor as readable if we have a non-zero expiration count.
        new_state.set(FileState::READABLE, self.get_timer_count() > 0);

        self.update_state(
            FileState::READABLE,
            new_state,
            FileSignals::empty(),
            cb_queue,
        );
    }

    fn update_state(
        &mut self,
        mask: FileState,
        state: FileState,
        signals: FileSignals,
        cb_queue: &mut CallbackQueue,
    ) {
        let old_state = self.state;

        // Remove the mask, then copy the masked flags.
        self.state.remove(mask);
        self.state.insert(state & mask);

        self.handle_state_change(old_state, signals, cb_queue);
    }

    fn handle_state_change(
        &mut self,
        old_state: FileState,
        signals: FileSignals,
        cb_queue: &mut CallbackQueue,
    ) {
        let states_changed = self.state ^ old_state;

        // Just return if nothing changed.
        if states_changed.is_empty() && signals.is_empty() {
            return;
        }

        self.event_source
            .notify_listeners(self.state, states_changed, signals, cb_queue);
    }
}