shadow_rs/utility/byte_queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/*
* The Shadow Simulator
* See LICENSE for licensing information
*/
use std::collections::LinkedList;
use std::io::{ErrorKind, Read, Write};
use bytes::{Bytes, BytesMut};
/// A queue of bytes that supports reading and writing stream and/or packet data.
///
/// Both stream and packet data can be pushed onto the buffer and their order will be preserved.
/// Data is stored internally as a linked list of chunks. Each chunk stores either stream or packet
/// data. Consecutive stream data may be merged into a single chunk, but consecutive packets will
/// always be contained in their own chunks.
///
/// To avoid memory copies when moving bytes from one `ByteQueue` to another, you can use
/// `pop_chunk()` to remove a chunk from the queue, and use `push_chunk()` to add it to another
/// queue.
pub struct ByteQueue {
/// The queued bytes.
bytes: LinkedList<ByteChunk>,
/// A pre-allocated buffer that can be used for new bytes.
unused_buffer: Option<BytesMut>,
/// The number of bytes in the queue.
length: usize,
/// The size of newly allocated chunks when storing stream data.
default_chunk_capacity: usize,
#[cfg(test)]
/// An allocation counter for testing purposes.
total_allocations: u64,
}
impl ByteQueue {
pub fn new(default_chunk_capacity: usize) -> Self {
Self {
bytes: LinkedList::new(),
unused_buffer: None,
length: 0,
default_chunk_capacity,
#[cfg(test)]
total_allocations: 0,
}
}
/// The number of bytes in the queue. If the queue has 0 bytes, it does not mean that the queue
/// is empty since there may be 0-length packets in the queue.
pub fn num_bytes(&self) -> usize {
self.length
}
/// Returns true if the queue has bytes.
pub fn has_bytes(&self) -> bool {
self.num_bytes() > 0
}
/// Returns true if the queue has data/chunks, which may include packets with 0 bytes.
pub fn has_chunks(&self) -> bool {
!self.bytes.is_empty()
}
#[must_use]
fn alloc_zeroed_buffer(&mut self, size: usize) -> BytesMut {
#[cfg(test)]
{
self.total_allocations += 1;
}
BytesMut::from_iter(std::iter::repeat(0).take(size))
}
/// Push stream data onto the queue. The data may be merged into the previous stream chunk.
pub fn push_stream<R: Read>(&mut self, mut src: R) -> std::io::Result<usize> {
let mut total_copied = 0;
loop {
let mut unused = match self.unused_buffer.take() {
// we already have an allocated buffer
Some(x) => x,
// we need to allocate a new buffer
None => self.alloc_zeroed_buffer(self.default_chunk_capacity),
};
assert_eq!(unused.len(), unused.capacity());
let copied = src.read(&mut unused)?;
let bytes = unused.split_to(copied);
total_copied += bytes.len();
if !unused.is_empty() {
// restore the remaining unused buffer
self.unused_buffer = Some(unused);
}
if bytes.is_empty() {
break;
}
let mut bytes = Some(bytes);
// if there is some data chunk in the queue
if let Some(last_chunk) = self.bytes.back_mut() {
// if the last chunk was a stream chunk
if last_chunk.chunk_type == ChunkType::Stream {
// if the last stream chunk is mutable
if let BytesWrapper::Mutable(last_chunk) = &mut last_chunk.data {
let len = bytes.as_ref().unwrap().len();
// try merging our new bytes into the last chunk, which will be
// successful if it doesn't require any memory copying
// (puts 'bytes' back if the merge was unsuccessful)
bytes = last_chunk.try_unsplit(bytes.take().unwrap()).err();
if bytes.is_none() {
// we were successful, so increase the queue's length manually
self.length += len;
}
}
}
}
// if we didn't merge it into the previous chunk
if let Some(bytes) = bytes {
self.push_chunk(bytes, ChunkType::Stream);
}
}
Ok(total_copied)
}
/// Push packet data onto the queue in a single chunk. Exactly `size` bytes will be read into
/// the packet.
pub fn push_packet<R: Read>(&mut self, mut src: R, size: usize) -> std::io::Result<()> {
let unused = match &mut self.unused_buffer {
// if the existing 'unused_buffer' has enough space
Some(buf) if buf.len() >= size => buf,
// otherwise allocate a new buffer
_ => &mut self.alloc_zeroed_buffer(size),
};
assert_eq!(unused.len(), unused.capacity());
src.read_exact(&mut unused[..size])?;
let bytes = unused.split_to(size);
// we may have used up all of the space in 'unused_buffer'
if let Some(ref unused_buffer) = self.unused_buffer {
if unused_buffer.is_empty() {
self.unused_buffer = None;
}
}
self.push_chunk(bytes, ChunkType::Packet);
Ok(())
}
/// Push a chunk of stream or packet data onto the queue.
pub fn push_chunk(&mut self, data: impl Into<BytesWrapper>, chunk_type: ChunkType) -> usize {
let data = data.into();
let len = data.len();
self.length += len;
self.bytes.push_back(ByteChunk::new(data, chunk_type));
len
}
/// Pop data from the queue. Only a single type of data will be popped per invocation. To read
/// all data from the queue, you must call this method until the returned chunk type is `None`.
/// Zero-length packets may be returned. If packet data is returned but `dst` did not have
/// enough space, the remaining bytes in the packet will be dropped. Returns a tuple containing
/// the number of bytes copied, the number of bytes removed from the queue (including dropped
/// bytes), and the chunk type.
pub fn pop<W: Write>(&mut self, dst: W) -> std::io::Result<Option<(usize, usize, ChunkType)>> {
// peek the front to see what kind of data is next
match self.bytes.front() {
Some(x) => match x.chunk_type {
ChunkType::Stream => {
let num_copied = self.pop_stream(dst)?;
Ok(Some((num_copied, num_copied, ChunkType::Stream)))
}
ChunkType::Packet => {
let (num_copied, num_removed_from_buf) = self.pop_packet(dst)?;
Ok(Some((num_copied, num_removed_from_buf, ChunkType::Packet)))
}
},
None => Ok(None),
}
}
fn pop_stream<W: Write>(&mut self, mut dst: W) -> std::io::Result<usize> {
let mut total_copied = 0;
assert_ne!(
self.bytes.len(),
0,
"This function assumes there is a chunk"
);
loop {
let bytes = match self.bytes.front_mut() {
Some(x) if x.chunk_type != ChunkType::Stream => break,
Some(x) => &mut x.data,
None => break,
};
let copied = match dst.write(bytes.as_ref()) {
Ok(x) => x,
// may have been interrupted due to a signal, so try again
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) if e.kind() == ErrorKind::WouldBlock => {
// only return an error if no bytes have been copied yet
if total_copied == 0 {
return Err(e);
}
// no bytes could be written this iteration
0
}
// a partial write may have occurred in previous iterations
Err(e) => return Err(e),
};
let _ = bytes.split_to(copied);
if copied == 0 {
break;
}
self.length -= copied;
total_copied += copied;
if bytes.is_empty() {
self.bytes.pop_front();
}
}
Ok(total_copied)
}
fn pop_packet<W: Write>(&mut self, mut dst: W) -> std::io::Result<(usize, usize)> {
let mut chunk = self
.bytes
.pop_front()
.expect("This function assumes there is a chunk");
assert_eq!(chunk.chunk_type, ChunkType::Packet);
let bytes = &mut chunk.data;
let packet_len = bytes.len();
// decrease the length now in case we return early
self.length = self.length.checked_sub(packet_len).unwrap();
let mut total_copied = 0;
loop {
let copied = match dst.write(bytes.as_ref()) {
Ok(x) => x,
// may have been interrupted due to a signal, so try again
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
// `WouldBlock` typically means "try again later", but we don't support that
// behaviour since a packet may have been partially copied already
Err(e) if e.kind() == ErrorKind::WouldBlock => {
panic!("Non-blocking writers aren't supported for packets")
}
// a partial write may have occurred in previous iterations, and the remainder of
// the packet will be dropped
Err(e) => return Err(e),
};
let _ = bytes.split_to(copied);
if copied == 0 {
break;
}
total_copied += copied;
}
Ok((total_copied, packet_len))
}
/// Pop a single chunk of data from the queue. The `size_hint` argument is used to limit the
/// number of bytes in the returned chunk iff the next chunk has stream data. If the returned
/// chunk has packet data, the `size_hint` is ignored and the entire packet is returned.
pub fn pop_chunk(&mut self, size_hint: usize) -> Option<(Bytes, ChunkType)> {
let chunk = self.bytes.front_mut()?;
let chunk_type = chunk.chunk_type;
let bytes = match chunk_type {
ChunkType::Stream => {
let temp = chunk
.data
.split_to(std::cmp::min(chunk.data.len(), size_hint));
if chunk.data.is_empty() {
self.bytes.pop_front();
}
temp
}
ChunkType::Packet => self.bytes.pop_front().unwrap().data,
};
self.length -= bytes.len();
Some((bytes.into(), chunk_type))
}
/// Peek data from the queue. Only a single type of data will be peeked per invocation.
/// Zero-length packets may be returned. If packet data is returned but `dst` did not have
/// enough space, the packet written to `dst` will be truncated. Returns a tuple containing the
/// number of bytes copied, the number of bytes that would have been copied if `dst` had enough
/// space (for packet chunks, the size of the packet), and the chunk type.
pub fn peek<W: Write>(&self, dst: W) -> std::io::Result<Option<(usize, usize, ChunkType)>> {
// peek the front to see what kind of data is next
match self.bytes.front() {
Some(x) => match x.chunk_type {
ChunkType::Stream => {
let num_copied = self.peek_stream(dst)?;
Ok(Some((num_copied, num_copied, ChunkType::Stream)))
}
ChunkType::Packet => {
let (num_copied, size_of_packet) = self.peek_packet(dst)?;
Ok(Some((num_copied, size_of_packet, ChunkType::Packet)))
}
},
None => Ok(None),
}
}
fn peek_stream<W: Write>(&self, mut dst: W) -> std::io::Result<usize> {
let mut total_copied = 0;
assert_ne!(
self.bytes.len(),
0,
"This function assumes there is a chunk"
);
for bytes in self.bytes.iter() {
let mut bytes = match bytes {
x if x.chunk_type != ChunkType::Stream => break,
x => x.data.as_ref(),
};
loop {
let copied = match dst.write(bytes) {
Ok(x) => x,
// may have been interrupted due to a signal, so try again
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) if e.kind() == ErrorKind::WouldBlock => {
// only return an error if no bytes have been copied yet
if total_copied == 0 {
return Err(e);
}
// no bytes could be written this iteration
0
}
// a partial write may have occurred in previous iterations
Err(e) => return Err(e),
};
bytes = &bytes[copied..];
if copied == 0 {
break;
}
total_copied += copied;
}
}
Ok(total_copied)
}
fn peek_packet<W: Write>(&self, mut dst: W) -> std::io::Result<(usize, usize)> {
let chunk = self
.bytes
.front()
.expect("This function assumes there is a chunk");
assert_eq!(chunk.chunk_type, ChunkType::Packet);
let mut bytes = chunk.data.as_ref();
let packet_len = bytes.len();
let mut total_copied = 0;
loop {
let copied = match dst.write(bytes) {
Ok(x) => x,
// may have been interrupted due to a signal, so try again
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
// `WouldBlock` typically means "try again later", but we don't support that
// behaviour since a packet may have been partially copied already
Err(e) if e.kind() == ErrorKind::WouldBlock => {
panic!("Non-blocking writers aren't supported for packets")
}
// a partial write may have occurred in previous iterations, and the remainder of
// the packet will be dropped
Err(e) => return Err(e),
};
bytes = &bytes[copied..];
if copied == 0 {
break;
}
total_copied += copied;
}
Ok((total_copied, packet_len))
}
}
// a sanity check only when using debug mode
#[cfg(debug_assertions)]
impl std::ops::Drop for ByteQueue {
fn drop(&mut self) {
// check that the length is consistent with the number of remaining bytes
assert_eq!(
self.num_bytes(),
self.bytes.iter().map(|x| x.data.len()).sum::<usize>()
);
}
}
/// The types of data that are supported by the [`ByteQueue`].
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ChunkType {
Stream,
Packet,
}
/// A wrapper type that holds either [`Bytes`] or [`BytesMut`].
pub enum BytesWrapper {
Mutable(BytesMut),
Immutable(Bytes),
}
impl From<BytesMut> for BytesWrapper {
fn from(x: BytesMut) -> Self {
BytesWrapper::Mutable(x)
}
}
impl From<Bytes> for BytesWrapper {
fn from(x: Bytes) -> Self {
BytesWrapper::Immutable(x)
}
}
impl From<BytesWrapper> for Bytes {
fn from(x: BytesWrapper) -> Self {
match x {
BytesWrapper::Mutable(x) => x.freeze(),
BytesWrapper::Immutable(x) => x,
}
}
}
impl std::convert::AsRef<[u8]> for BytesWrapper {
fn as_ref(&self) -> &[u8] {
match self {
BytesWrapper::Mutable(x) => x,
BytesWrapper::Immutable(x) => x,
}
}
}
impl std::borrow::Borrow<[u8]> for BytesWrapper {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl BytesWrapper {
enum_passthrough!(self, (), Mutable, Immutable;
pub fn len(&self) -> usize
);
enum_passthrough!(self, (), Mutable, Immutable;
pub fn is_empty(&self) -> bool
);
enum_passthrough_into!(self, (at), Mutable, Immutable;
pub fn split_to(&mut self, at: usize) -> BytesWrapper
);
}
/// A chunk of bytes and its type.
struct ByteChunk {
data: BytesWrapper,
chunk_type: ChunkType,
}
impl ByteChunk {
pub fn new(data: BytesWrapper, chunk_type: ChunkType) -> Self {
Self { data, chunk_type }
}
}
#[cfg(test)]
mod tests {
use rand::{Rng, RngCore};
use rand_chacha::ChaCha20Rng;
use rand_core::SeedableRng;
use super::*;
#[test]
fn test_bytequeue_stream() {
let chunk_size = 5;
let mut bq = ByteQueue::new(chunk_size);
let src1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
let src2 = [51, 52, 53];
let mut dst1 = [0; 8];
let mut dst2 = [0; 10];
bq.push_stream(&src1[..]).unwrap();
bq.push_stream(&[][..]).unwrap();
bq.push_stream(&src2[..]).unwrap();
// test size and allocation count
assert_eq!(bq.num_bytes(), src1.len() + src2.len());
// ceiling division
assert_eq!(
bq.bytes.len(),
(src1.len() + src2.len() - 1) / chunk_size + 1
);
assert_eq!(bq.total_allocations as usize, bq.bytes.len());
// test peek()
assert_eq!(8, bq.peek(&mut dst1[..]).unwrap().unwrap().0);
assert_eq!(10, bq.peek(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(dst1, [1, 2, 3, 4, 5, 6, 7, 8]);
assert_eq!(dst2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
assert_eq!(bq.num_bytes(), src1.len() + src2.len());
// test pop()
dst1.fill(0);
dst2.fill(0);
assert_eq!(8, bq.pop(&mut dst1[..]).unwrap().unwrap().0);
assert_eq!(8, bq.pop(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(dst1, [1, 2, 3, 4, 5, 6, 7, 8]);
assert_eq!(dst2, [9, 10, 11, 12, 13, 51, 52, 53, 0, 0]);
assert_eq!(bq.num_bytes(), 0);
}
#[test]
fn test_bytequeue_packet() {
let mut bq = ByteQueue::new(5);
let src1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
let src2 = [51, 52, 53];
let mut dst1 = [0; 8];
let mut dst2 = [0; 10];
bq.push_packet(&src1[..], src1.len()).unwrap();
bq.push_packet(&[][..], 0).unwrap();
bq.push_packet(&src2[..], src2.len()).unwrap();
// test size and allocation count
assert_eq!(bq.num_bytes(), src1.len() + src2.len());
assert_eq!(bq.bytes.len(), 3);
assert_eq!(bq.total_allocations, 3);
// test peek()
assert_eq!(8, bq.peek(&mut dst1[..]).unwrap().unwrap().0);
assert_eq!(10, bq.peek(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(10, bq.peek(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(dst1, [1, 2, 3, 4, 5, 6, 7, 8]);
assert_eq!(dst2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
assert_eq!(bq.num_bytes(), src1.len() + src2.len());
// test pop()
dst1.fill(0);
dst2.fill(0);
assert_eq!(8, bq.pop(&mut dst1[..]).unwrap().unwrap().0);
assert_eq!(0, bq.pop(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(3, bq.pop(&mut dst2[..]).unwrap().unwrap().0);
assert_eq!(dst1, [1, 2, 3, 4, 5, 6, 7, 8]);
assert_eq!(dst2, [51, 52, 53, 0, 0, 0, 0, 0, 0, 0]);
assert_eq!(bq.num_bytes(), 0);
}
#[test]
fn test_bytequeue_combined_1() {
let mut bq = ByteQueue::new(10);
bq.push_stream(&[1, 2, 3][..]).unwrap();
bq.push_packet(&[4, 5, 6][..], 3).unwrap();
bq.push_stream(&[7, 8, 9][..]).unwrap();
assert_eq!(bq.num_bytes(), 9);
assert_eq!(bq.bytes.len(), 3);
assert_eq!(bq.total_allocations, 1);
let mut buf = [0; 20];
assert_eq!(
bq.pop(&mut buf[..]).unwrap(),
Some((3, 3, ChunkType::Stream))
);
assert_eq!(buf[..3], [1, 2, 3]);
assert_eq!(
bq.pop(&mut buf[..]).unwrap(),
Some((3, 3, ChunkType::Packet))
);
assert_eq!(buf[..3], [4, 5, 6]);
assert_eq!(
bq.pop(&mut buf[..]).unwrap(),
Some((3, 3, ChunkType::Stream))
);
assert_eq!(buf[..3], [7, 8, 9]);
assert!(!bq.has_bytes());
}
#[test]
fn test_bytequeue_combined_2() {
let mut bq = ByteQueue::new(5);
bq.push_stream(&[1, 2, 3, 4][..]).unwrap();
bq.push_stream(&[5][..]).unwrap();
bq.push_stream(&[6][..]).unwrap();
bq.push_packet(&[7, 8, 9, 10, 11, 12, 13, 14][..], 8)
.unwrap();
bq.push_stream(&[15, 16, 17][..]).unwrap();
bq.push_chunk(
Bytes::from_static(&[100, 101, 102, 103, 104, 105]),
ChunkType::Packet,
);
bq.push_packet(&[][..], 0).unwrap();
bq.push_stream(&[18][..]).unwrap();
bq.push_stream(&[19][..]).unwrap();
bq.push_stream(&[20, 21][..]).unwrap();
let mut buf = [0; 20];
assert_eq!(
bq.pop(&mut buf[..3]).unwrap(),
Some((3, 3, ChunkType::Stream))
);
assert_eq!(buf[..3], [1, 2, 3]);
assert_eq!(
bq.pop(&mut buf[..5]).unwrap(),
Some((3, 3, ChunkType::Stream))
);
assert_eq!(buf[..3], [4, 5, 6]);
assert_eq!(
bq.pop(&mut buf[..4]).unwrap(),
Some((4, 8, ChunkType::Packet))
);
assert_eq!(buf[..4], [7, 8, 9, 10]);
assert_eq!(
bq.pop(&mut buf[..4]).unwrap(),
Some((3, 3, ChunkType::Stream))
);
assert_eq!(buf[..3], [15, 16, 17]);
assert_eq!(
bq.pop(&mut buf[..4]).unwrap(),
Some((4, 6, ChunkType::Packet))
);
assert_eq!(buf[..4], [100, 101, 102, 103]);
assert_eq!(
bq.pop(&mut buf[..4]).unwrap(),
Some((0, 0, ChunkType::Packet))
);
assert_eq!(bq.pop_chunk(4), Some(([18][..].into(), ChunkType::Stream)));
assert_eq!(
bq.pop_chunk(4),
Some(([19, 20, 21][..].into(), ChunkType::Stream))
);
assert_eq!(bq.pop_chunk(8), None);
assert_eq!(bq.pop(&mut buf[..4]).unwrap(), None);
assert!(!bq.has_bytes());
}
#[test]
fn test_bytequeue_fallible_writer() {
struct TestWriter;
impl std::io::Write for TestWriter {
fn write(&mut self, _buf: &[u8]) -> std::io::Result<usize> {
Err(std::io::ErrorKind::BrokenPipe.into())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
let mut bq = ByteQueue::new(10);
bq.push_packet(&[4, 5, 6][..], 3).unwrap();
bq.push_stream(&[1, 2, 3][..]).unwrap();
let mut writer = TestWriter {};
// the remainder of the packet will be dropped, so length will decrease by 3 bytes
bq.pop(&mut writer).unwrap_err();
// no stream data will be dropped, so length will not decrease
bq.pop(&mut writer).unwrap_err();
assert_eq!(bq.num_bytes(), 3);
}
/// Test that the peek output always matches the pop output.
#[test]
fn test_bytequeue_peek() {
let mut rng = ChaCha20Rng::seed_from_u64(1234);
const PROB_PUSH: f64 = 0.8;
const PROB_POP: f64 = 0.9;
const PROB_STREAM: f64 = 0.5;
const MAX_PUSH: usize = 20;
const MAX_POP: usize = 30;
// the bytequeue doesn't use any unsafe code, so we don't really need to worry about UB
#[cfg(not(miri))]
const NUM_ITER: usize = 5000;
#[cfg(miri)]
const NUM_ITER: usize = 10;
// pop more bytes and chunks than we push so that we generally stay near an empty queue
static_assertions::const_assert!(PROB_POP > PROB_PUSH);
static_assertions::const_assert!(MAX_POP > MAX_PUSH);
let mut bq = ByteQueue::new(10);
for _ in 0..NUM_ITER {
// push
if rng.gen_bool(PROB_PUSH) {
let mut bytes = vec![0u8; rng.gen_range(0..MAX_PUSH)];
rng.fill_bytes(&mut bytes);
if rng.gen_bool(PROB_STREAM) {
bq.push_stream(&bytes[..]).unwrap();
} else {
bq.push_packet(&bytes[..], bytes.len()).unwrap();
}
}
let pop_size = rng.gen_range(0..MAX_POP);
// peek
let mut peeked_bytes = vec![0u8; pop_size];
let peek_rv = bq.peek(&mut peeked_bytes[..]).unwrap();
// pop
if rng.gen_bool(PROB_POP) {
let mut popped_bytes = vec![0u8; pop_size];
let pop_rv = bq.pop(&mut popped_bytes[..]).unwrap();
assert_eq!(peek_rv, pop_rv);
assert_eq!(popped_bytes, peeked_bytes);
}
}
}
}