1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/// Log a warning, and if a debug build then panic.
macro_rules! debug_panic {
($($x:tt)+) => {
log::warn!($($x)+);
#[cfg(debug_assertions)]
panic!($($x)+);
};
}
/// Log a message once at level `lvl_once`, and any later log messages from this line at level
/// `lvl_remaining`.
///
/// A log target is not supported. The string "(LOG_ONCE)" will be prepended to the message to
/// indicate that future messages won't be logged at `lvl_once`.
///
/// ```
/// # use log::Level;
/// # use shadow_rs::log_once_at_level;
/// log_once_at_level!(Level::Warn, Level::Debug, "Unexpected flag {}", 10);
/// ```
#[allow(unused_macros)]
#[macro_export]
macro_rules! log_once_at_level {
($lvl_once:expr, $lvl_remaining:expr, $str:literal $($x:tt)*) => {
// don't do atomic operations if this log statement isn't enabled
if log::log_enabled!($lvl_once) || log::log_enabled!($lvl_remaining) {
static HAS_LOGGED: std::sync::atomic::AtomicBool =
std::sync::atomic::AtomicBool::new(false);
// TODO: doing just a `load()` might be faster in the typical case, but would need to
// have performance metrics to back that up
match HAS_LOGGED.compare_exchange(
false,
true,
std::sync::atomic::Ordering::Relaxed,
std::sync::atomic::Ordering::Relaxed,
) {
Ok(_) => log::log!($lvl_once, "(LOG_ONCE) {}", format_args!($str $($x)*)),
Err(_) => log::log!($lvl_remaining, "(LOG_ONCE) {}", format_args!($str $($x)*)),
}
}
};
}
/// Log a message once at level `lvl_once` for each distinct value, and any
/// later log messages from this line with an already-logged value at level
/// `lvl_remaining`.
///
/// A log target is not supported. The string "(LOG_ONCE)" will be prepended to
/// the message to indicate that future messages won't be logged at `lvl_once`.
///
/// The fast-path (where the given value has already been logged) aquires a
/// read-lock and looks up the value in a hash table.
///
/// ```
/// # use log::Level;
/// # use shadow_rs::log_once_per_value_at_level;
/// # let unknown_flag: i32 = 0;
/// log_once_per_value_at_level!(unknown_flag, i32, Level::Warn, Level::Debug, "Unknown flag value {unknown_flag}");
/// ```
#[allow(unused_macros)]
#[macro_export]
macro_rules! log_once_per_value_at_level {
($value:expr, $t:ty, $lvl_once:expr, $lvl_remaining:expr, $str:literal $($x:tt)*) => {
// don't do atomic operations if this log statement isn't enabled
if log::log_enabled!($lvl_once) || log::log_enabled!($lvl_remaining) {
use $crate::utility::once_set::OnceSet;
static LOGGED_SET : OnceSet<$t> = OnceSet::new();
let level = if LOGGED_SET.insert($value) {
$lvl_once
} else {
$lvl_remaining
};
log::log!(level, "(LOG_ONCE) {}", format_args!($str $($x)*))
}
};
}
/// Log a message once at warn level, and any later log messages from this line at debug level. A
/// log target is not supported. The string "(LOG_ONCE)" will be prepended to the message to
/// indicate that future messages won't be logged at warn level.
///
/// ```ignore
/// warn_once_then_debug!("Unexpected flag {}", 10);
/// ```
#[allow(unused_macros)]
macro_rules! warn_once_then_debug {
($($x:tt)+) => {
log_once_at_level!(log::Level::Warn, log::Level::Debug, $($x)+);
};
}
/// Log a message once at warn level, and any later log messages from this line at trace level. A
/// log target is not supported. The string "(LOG_ONCE)" will be prepended to the message to
/// indicate that future messages won't be logged at warn level.
///
/// ```ignore
/// warn_once_then_trace!("Unexpected flag {}", 10);
/// ```
#[allow(unused_macros)]
macro_rules! warn_once_then_trace {
($($x:tt)+) => {
log_once_at_level!(log::Level::Warn, log::Level::Trace, $($x)+);
};
}
/// Implements logging functions that were generated by the `log_syscall` macro.
pub struct SyscallLogger;
/// Creates a logging function. This is written so that the macro can be called from within an
/// `impl` block, ideally directly before the syscall function is defined. See the macro definition
/// for the exact argument types that must be provided to the generated function. The macro itself
/// takes the syscall name, the return type, and the argument types.
///
/// The macro:
///
/// ```ignore
/// log_syscall!(close, /* rv */ c_int, /* fd */ c_int);
/// ```
///
/// expands to something like (excluding some extra boilerplate):
///
/// ```ignore
/// impl SyscallLogger {
/// pub fn close(...) -> std::io::Result<()> { ... }
/// }
/// ```
///
/// This generated function can later be called using:
///
/// ```ignore
/// SyscallLogger::close(...)?;
/// ```
macro_rules! log_syscall {
($name:ident, $rv:ty $(,)?) => {
log_syscall!($name, $rv,,);
};
($name:ident, $rv:ty, $($args:ty),* $(,)?) => {
paste::paste! { log_syscall!([< _syscall_logger_ $name >]; $name, $rv, $($args),*); }
};
($const_name:ident; $name:ident, $rv:ty, $($args:ty),*) => {
// We use a constant as a hack so that we can do "impl SyscallLogger { ... }" while already
// inside a "impl SyscallHandler { ... }" block. Apparently they may make this a hard error
// (with no way to opt-out with an `allow`) in the future:
// https://github.com/rust-lang/rust/issues/120363
#[doc(hidden)]
#[allow(non_upper_case_globals)]
#[allow(non_local_definitions)]
const $const_name : () = {
impl crate::utility::macros::SyscallLogger {
pub fn $name(
writer: impl std::io::Write,
args: [shadow_shim_helper_rs::syscall_types::SyscallReg; 6],
rv: &crate::host::syscall::types::SyscallResult,
fmt: crate::host::syscall::formatter::FmtOptions,
tid: crate::host::thread::ThreadId,
mem: &crate::host::memory_manager::MemoryManager,
) -> std::io::Result<()>
{
let syscall_args = <crate::host::syscall::formatter::SyscallArgsFmt::<$($args),*>>::new(args, fmt, mem);
let syscall_rv = crate::host::syscall::formatter::SyscallResultFmt::<$rv>::new(&rv, args, fmt, mem);
crate::host::syscall::formatter::write_syscall(
writer,
&crate::host::syscall::handler::Worker::current_time().unwrap(),
tid,
std::stringify!($name),
syscall_args,
syscall_rv,
)
}
}
};
};
}
/// Returns `None` if any field is not aligned, or if the bytes slice is too small to contain all
/// fields.
macro_rules! field_project {
($bytes:expr, $type:ty, $field1:ident) => {
field_project!($bytes, $type, ($field1,)).map(|x| x.0)
};
($bytes:expr, $type:ty, ($field1:ident,)) => {
field_project!(@ $bytes, $type, ($field1: A))
};
($bytes:expr, $type:ty, ($field1:ident, $field2:ident)) => {
field_project!(@ $bytes, $type, ($field1: A), ($field2: B))
};
($bytes:expr, $type:ty, ($field1:ident, $field2:ident, $field3:ident)) => {
field_project!(@ $bytes, $type, ($field1: A), ($field2: B), ($field3: C))
};
(@ $bytes:expr, $type:ty, $(($field:ident: $generic:ident)),*) => {{
// perform early type checking; we need `MaybeUninit<u8>` rather than just `u8`, otherwise
// this macro could be used to write uninitialized padding bytes to a `u8` slice
let bytes: &mut [std::mem::MaybeUninit<u8>] = $bytes;
const UNINIT: *const $type = std::mem::MaybeUninit::uninit().as_ptr();
const fn size_of_pointee<T>(_x: *const T) -> usize {
std::mem::size_of::<T>()
}
// This function is needed to:
// - ensure the type is `Pod`
// - link the lifetime of `bytes` to the return value's lifetime (we don't want to return a
// 'static lifetime by accident)
// - return the correct type for the field, which afaik is only available through the
// `addr_of` macro
fn field_project<$( $generic: shadow_pod::Pod ),*>(
bytes: &mut [std::mem::MaybeUninit<u8>],
_for_type_coercion: ($( *const $generic ),*,)
) -> Option<($( &mut std::mem::MaybeUninit<$generic> ),*,)> {
// the byte ranges of each field
const RANGES: &[std::ops::Range<usize>] = &[ $( {
const OFFSET: usize = std::mem::offset_of!($type, $field);
const SIZE: usize = size_of_pointee(unsafe { std::ptr::addr_of!((*UNINIT).$field) });
OFFSET..(OFFSET+SIZE)
} ),* ];
// check that no byte ranges are overlapping
const {
let mut i = 0;
while i < RANGES.len() {
let mut j = i+1;
while j < RANGES.len() {
if RANGES[i].start < RANGES[j].end && RANGES[j].start < RANGES[i].end {
panic!("Byte ranges overlap");
}
j += 1;
}
i += 1;
}
}
// check that no byte ranges have the same start (don't want two mutable references to
// the same ZST)
const {
let mut i = 0;
while i < RANGES.len() {
let mut j = i+1;
while j < RANGES.len() {
assert!(RANGES[i].start != RANGES[j].start, "Byte ranges overlap (ZST)");
j += 1;
}
i += 1;
}
}
// get the maximum of all byte ranges
const RANGE_MAX: usize = {
let mut max = 0;
let mut i = 0;
while i < RANGES.len() {
if RANGES[i].end > max {
max = RANGES[i].end;
}
i += 1;
}
max
};
// make sure a field does not exist outside of `bytes`
if RANGE_MAX > bytes.len() {
return None;
}
let bytes = bytes.as_mut_ptr();
// return the references to each field as a tuple
Some(( $( {
// NOTE: do not access the original 'bytes' slice within this block, otherwise it
// causes stacked borrows issues
const OFFSET: usize = std::mem::offset_of!($type, $field);
// SAFETY: we've already checked that the field offset is within the bounds of the
// bytes
let ptr = unsafe { bytes.add(OFFSET) } as *mut std::mem::MaybeUninit<$generic>;
if !ptr.is_aligned() {
return None;
}
// SAFETY:
// - "The pointer must be properly aligned." - checked above
// - "It must be 'dereferenceable' in the sense defined in the module
// documentation." - points to valid memory within a single allocated object, is
// non-null
// - "The pointer must point to an initialized instance of T." - the pointer is a MaybeUninit
// - "You must enforce Rust’s aliasing rules, since the returned lifetime 'a is
// arbitrarily chosen and does not necessarily reflect the actual lifetime of the
// data. In particular, while this reference exists, the memory the pointer points
// to must not get accessed (read or written) through any other pointer." - the
// outer function makes sure that the returned reference has the correct lifetime
unsafe { ptr.as_mut() }.unwrap()
} ),*, ))
}
// there's no way to find the types of the fields directly, so we need to get values whose
// types contain the types of the fields and let rust use type inference to cast to the
// correct types
let addr_of_fields = ($( const { unsafe { std::ptr::addr_of!((*UNINIT).$field) } } ),*,);
field_project(bytes, addr_of_fields)
}};
}
#[cfg(test)]
mod tests {
// will panic in debug mode
#[test]
#[cfg(debug_assertions)]
#[should_panic]
fn debug_panic_macro() {
debug_panic!("Hello {}", "World");
}
// will *not* panic in release mode
#[test]
#[cfg(not(debug_assertions))]
fn debug_panic_macro() {
debug_panic!("Hello {}", "World");
}
#[test]
fn log_once_at_level() {
// we don't have a logger set up so we can't actually inspect the log output (well we
// probably could with a custom logger), so instead we just make sure it compiles
for x in 0..10 {
log_once_at_level!(log::Level::Warn, log::Level::Debug, "{x}");
}
log_once_at_level!(log::Level::Warn, log::Level::Debug, "A");
log_once_at_level!(log::Level::Warn, log::Level::Debug, "A");
// expected log output is:
// Warn: 0
// Debug: 1
// Debug: 2
// ...
// Warn: A
// Warn: A
}
#[test]
fn warn_once() {
warn_once_then_trace!("A");
warn_once_then_debug!("A");
}
#[test]
fn field_project_1() {
let mut foo: libc::nlmsghdr = shadow_pod::zeroed();
let foo_bytes = unsafe { shadow_pod::as_u8_slice_mut(&mut foo) };
let foo_nlmsg_type = field_project!(foo_bytes, libc::nlmsghdr, nlmsg_type).unwrap();
foo_nlmsg_type.write(10);
assert_eq!(foo.nlmsg_type, 10);
}
#[test]
fn field_project_2() {
let mut foo: libc::nlmsghdr = shadow_pod::zeroed();
let foo_bytes = unsafe { shadow_pod::as_u8_slice_mut(&mut foo) };
let (foo_nlmsg_type, foo_nlmsg_flags) =
field_project!(foo_bytes, libc::nlmsghdr, (nlmsg_type, nlmsg_flags)).unwrap();
foo_nlmsg_type.write(10);
foo_nlmsg_flags.write(20);
// make sure the order we access the fields doesn't matter (no stacked borrows miri errors)
foo_nlmsg_flags.write(40);
foo_nlmsg_type.write(30);
assert_eq!(foo.nlmsg_type, 30);
assert_eq!(foo.nlmsg_flags, 40);
}
#[test]
fn field_project_type_inference() {
let mut foo: libc::nlmsghdr = shadow_pod::zeroed();
let foo_bytes = unsafe { shadow_pod::as_u8_slice_mut(&mut foo) };
// make sure field_project returns a u16 reference (ideally we'd want a test that uses an
// incorrect type and makes sure that the code fails to build to make sure that rust's type
// inference isn't leading to incorrect code, but writing rust tests that check that code
// fails to compile isn't supported and the workarounds aren't very nice)
let _nlmsg_type: &mut std::mem::MaybeUninit<u16> =
field_project!(foo_bytes, libc::nlmsghdr, nlmsg_type).unwrap();
}
#[test]
fn field_project_range() {
let mut foo: libc::nlmsghdr = shadow_pod::zeroed();
let foo_bytes = unsafe { shadow_pod::as_u8_slice_mut(&mut foo) };
// #[repr(C)]
// pub struct nlmsghdr {
// pub nlmsg_len: u32,
// pub nlmsg_type: u16,
// ...
assert!(field_project!(&mut foo_bytes[..0], libc::nlmsghdr, nlmsg_type).is_none());
assert!(field_project!(&mut foo_bytes[..5], libc::nlmsghdr, nlmsg_type).is_none());
assert!(field_project!(&mut foo_bytes[..6], libc::nlmsghdr, nlmsg_type).is_some());
}
#[test]
fn field_project_align() {
let mut foo: libc::nlmsghdr = shadow_pod::zeroed();
let foo_bytes = unsafe { shadow_pod::as_u8_slice_mut(&mut foo) };
// #[repr(C)]
// pub struct nlmsghdr {
// pub nlmsg_len: u32,
// pub nlmsg_type: u16,
// ...
assert!(field_project!(&mut foo_bytes[..], libc::nlmsghdr, nlmsg_type).is_some());
assert!(field_project!(&mut foo_bytes[1..], libc::nlmsghdr, nlmsg_type).is_none());
}
}