tcp/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
//! A TCP implementation with a somewhat-BSD-like socket API. It is written as a
//! ["sans-I/O"][sans-io] library meaning it doesn't do any networking I/O itself, it just accepts
//! bytes and provides bytes. A [dependencies](Dependencies) object must be be provided to support
//! setting timers and getting the current time. The TCP state object should probably be used with a
//! reference-counting wrapper so that a reference to the state object can be stored in the timer
//! callbacks.
//!
//! [sans-io]: https://sans-io.readthedocs.io
//!
//! ```
//! use std::cell::RefCell;
//! use std::rc::{Rc, Weak};
//!
//! #[derive(Debug)]
//! struct TcpDependencies {
//! // a reference to the tcp state
//! state: Weak<RefCell<tcp::TcpState<Self>>>,
//! }
//!
//! impl tcp::Dependencies for TcpDependencies {
//! type Instant = std::time::Instant;
//! type Duration = std::time::Duration;
//!
//! fn register_timer(
//! &self,
//! time: Self::Instant,
//! f: impl FnOnce(&mut tcp::TcpState<Self>, tcp::TimerRegisteredBy) + Send + Sync + 'static,
//! ) {
//! let tcp_state = self.state.upgrade().unwrap();
//!
//! // TODO: To register timers, you would likely want to involve an async
//! // runtime. A simple example would create a new task for each timer. The
//! // task would sleep for some duration and then run the callback.
//! }
//!
//! fn current_time(&self) -> Self::Instant {
//! std::time::Instant::now()
//! }
//!
//! fn fork(&self) -> Self {
//! // TODO: the implementation here would depend on the implementation
//! // of `register_timer`
//! todo!();
//! }
//! }
//!
//! // create the TCP state object
//! let tcp_state = Rc::new_cyclic(|weak| {
//! let dependencies = TcpDependencies {
//! state: weak.clone(),
//! };
//! RefCell::new(tcp::TcpState::new(dependencies, tcp::TcpConfig::default()))
//! });
//!
//! let mut tcp_state = tcp_state.borrow_mut();
//!
//! // connect to port 80
//! let dst_addr = "127.0.0.1:80".parse().unwrap();
//! tcp_state.connect(dst_addr, || {
//! // here we would ask the network interface for an unused port (implicit bind),
//! // or where we would use the port assigned to a raw IP socket
//! let bind_addr = "127.0.0.1:2532".parse().unwrap();
//! Ok::<_, ()>((bind_addr, ()))
//! }).unwrap();
//!
//! // get the SYN packet from the connect
//! let (header, _payload) = tcp_state.pop_packet().unwrap();
//! assert!(header.flags.contains(tcp::TcpFlags::SYN));
//! assert_eq!(header.dst(), dst_addr);
//! ```
// There are three related state types in this crate:
//
// - `TcpState` — This is the public-facing type for the TCP state. Its methods take shared or
// mutable references. It contains a non-public `TcpStateEnum`.
// - `TcpStateEnum` — An enum of all individual TCP state types (ex: `ListeningState`,
// `EstablishedState`). It implements the `TcpStateTrait` trait, so its methods usually take owned
// objects and return owned objects.
// - `TcpStateTrait` — A trait implemented by each individual TCP state type, as well as the
// `TcpStateEnum` enum that encapsulates all individual states. Its methods usually take owned
// state objects and return owned `TcpStateEnum` objects.
#![forbid(unsafe_code)]
use std::fmt::Debug;
use std::io::{Read, Write};
use std::net::{Ipv4Addr, SocketAddrV4};
use bytes::{Bytes, BytesMut};
pub mod util;
mod buffer;
mod connection;
mod seq;
mod states;
mod window_scaling;
#[cfg(test)]
mod tests;
use crate::states::{
CloseWaitState, ClosedState, ClosingState, EstablishedState, FinWaitOneState, FinWaitTwoState,
InitState, LastAckState, ListenState, RstState, SynReceivedState, SynSentState, TimeWaitState,
};
use crate::util::SmallArrayBackedSlice;
/// A collection of methods that allow the TCP state to interact with the external system.
pub trait Dependencies: Debug + Sized {
type Instant: crate::util::time::Instant<Duration = Self::Duration>;
type Duration: crate::util::time::Duration;
/// Register a timer. The callback will be run on the parent [state](TcpState). The callback can
/// use the [`TimerRegisteredBy`] argument to know whether the timer was registered by the
/// parent state or one of its child states.
///
/// If a child state has not yet been accept()ed, it will be owned by a parent state. When a
/// child state registers a timer, the timer's callback will run on the parent state and the
/// callback will be given the `TimerRegisteredBy::Child` argument so that the callback can
/// delegate accordingly.
fn register_timer(
&self,
time: Self::Instant,
f: impl FnOnce(&mut TcpState<Self>, TimerRegisteredBy) + Send + Sync + 'static,
);
/// Get the current time.
fn current_time(&self) -> Self::Instant;
/// Create a new `Dependencies` for use by a child state. When a timer is registered by the
/// child state using this new object, the timer's callback will be run on the parent's state
/// with the `TimerRegisteredBy::Child` argument so that the parent knows to run the callback on
/// one of its child states.
///
/// When a child state has been accept()ed, it will no longer be owned by the parent state and
/// the parent state has no way to access this child state. The child state's `Dependencies`
/// should be updated during the [`finalize`](AcceptedTcpState::finalize) call (on the
/// [`AcceptedTcpState`] returned from [`accept`](TcpState::accept)) to run callbacks directly
/// on this state instead, and the callbacks should be given `TimerRegisteredBy::Parent` (the
/// child state has effectively become a parent state). This `Dependencies` object should also
/// make sure that all existing timers from before the state was accept()ed are also updated to
/// run callbacks directly on the state.
fn fork(&self) -> Self;
}
/// Specifies whether the callback is meant to run on the parent state or a child state.
///
/// For example if a child state registers a timer, a value of `TimerRegisteredBy::Child` will be
/// given to the callback so that it knows to apply the callback to a child state, not the parent
/// state.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TimerRegisteredBy {
Parent,
Child,
}
#[enum_dispatch::enum_dispatch]
trait TcpStateTrait<X>: Debug + Sized
where
X: Dependencies,
TcpStateEnum<X>: From<Self>,
{
/// Start closing this socket. It may or may not close immediately depending on what state the
/// socket is currently in.
fn close(self) -> (TcpStateEnum<X>, Result<(), CloseError>) {
(self.into(), Err(CloseError::InvalidState))
}
/// Start closing this socket by sending an RST packet. It may or may not close immediately
/// depending on what state the socket is currently in.
///
/// TODO:
/// RFC 9293: "The side of a connection issuing a reset should enter the TIME-WAIT state, [...]"
fn rst_close(self) -> (TcpStateEnum<X>, Result<(), RstCloseError>) {
(self.into(), Err(RstCloseError::InvalidState))
}
fn shutdown(self, _how: Shutdown) -> (TcpStateEnum<X>, Result<(), ShutdownError>) {
(self.into(), Err(ShutdownError::InvalidState))
}
fn listen<T, E>(
self,
_backlog: u32,
_associate_fn: impl FnOnce() -> Result<T, E>,
) -> (TcpStateEnum<X>, Result<T, ListenError<E>>) {
(self.into(), Err(ListenError::InvalidState))
}
fn connect<T, E>(
self,
_addr: SocketAddrV4,
_associate_fn: impl FnOnce() -> Result<(SocketAddrV4, T), E>,
) -> (TcpStateEnum<X>, Result<T, ConnectError<E>>) {
(self.into(), Err(ConnectError::InvalidState))
}
/// Accept a new child state from the pending connection queue. The TCP state for the child
/// socket is returned. The [`AcceptedTcpState::finalize`] method must be called immediately on
/// the returned child state before any code calls into the parent state again, otherwise the
/// child may miss some timer events.
fn accept(self) -> (TcpStateEnum<X>, Result<AcceptedTcpState<X>, AcceptError>) {
(self.into(), Err(AcceptError::InvalidState))
}
fn send(self, _reader: impl Read, _len: usize) -> (TcpStateEnum<X>, Result<usize, SendError>) {
(self.into(), Err(SendError::InvalidState))
}
fn recv(self, _writer: impl Write, _len: usize) -> (TcpStateEnum<X>, Result<usize, RecvError>) {
(self.into(), Err(RecvError::InvalidState))
}
/// Returns the number of bytes added to the TCP state's receive buffer. This may be
/// smaller (ex: duplicate packet) or larger (ex: there is a non-empty reassembly queue)
/// than the packet payload length.
fn push_packet(
self,
_header: &TcpHeader,
_payload: Payload,
) -> (TcpStateEnum<X>, Result<u32, PushPacketError>) {
(self.into(), Err(PushPacketError::InvalidState))
}
fn pop_packet(
self,
) -> (
TcpStateEnum<X>,
Result<(TcpHeader, Payload), PopPacketError>,
) {
(self.into(), Err(PopPacketError::InvalidState))
}
fn clear_error(&mut self) -> Option<TcpError>;
fn poll(&self) -> PollState;
fn wants_to_send(&self) -> bool;
fn local_remote_addrs(&self) -> Option<(SocketAddrV4, SocketAddrV4)>;
}
#[derive(Debug)]
pub struct TcpState<X: Dependencies>(Option<TcpStateEnum<X>>);
// this exposes many of the methods from `TcpStateTrait`, but not necessarily all of them (for
// example we don't expose `rst_close()`).
impl<X: Dependencies> TcpState<X> {
pub fn new(deps: X, config: TcpConfig) -> Self {
let new_state = InitState::new(deps, config);
Self(Some(new_state.into()))
}
#[inline]
fn with_state<T>(&mut self, f: impl FnOnce(TcpStateEnum<X>) -> (TcpStateEnum<X>, T)) -> T {
// get the current state, pass it to `f`, and then put it back (`f` may actually replace the
// state with an entirely different state object)
let state = self.0.take().unwrap();
let (state, rv) = f(state);
self.0 = Some(state);
rv
}
#[inline]
pub fn close(&mut self) -> Result<(), CloseError> {
self.with_state(|state| state.close())
}
#[inline]
pub fn shutdown(&mut self, how: Shutdown) -> Result<(), ShutdownError> {
self.with_state(|state| state.shutdown(how))
}
#[inline]
pub fn listen<T, E>(
&mut self,
backlog: u32,
associate_fn: impl FnOnce() -> Result<T, E>,
) -> Result<T, ListenError<E>> {
self.with_state(|state| state.listen(backlog, associate_fn))
}
#[inline]
pub fn connect<T, E>(
&mut self,
addr: SocketAddrV4,
associate_fn: impl FnOnce() -> Result<(SocketAddrV4, T), E>,
) -> Result<T, ConnectError<E>> {
self.with_state(|state| state.connect(addr, associate_fn))
}
#[inline]
pub fn accept(&mut self) -> Result<AcceptedTcpState<X>, AcceptError> {
self.with_state(|state| state.accept())
}
#[inline]
pub fn send(&mut self, reader: impl Read, len: usize) -> Result<usize, SendError> {
self.with_state(|state| state.send(reader, len))
}
#[inline]
pub fn recv(&mut self, writer: impl Write, len: usize) -> Result<usize, RecvError> {
self.with_state(|state| state.recv(writer, len))
}
#[inline]
pub fn push_packet(
&mut self,
header: &TcpHeader,
payload: Payload,
) -> Result<u32, PushPacketError> {
self.with_state(|state| state.push_packet(header, payload))
}
#[inline]
pub fn pop_packet(&mut self) -> Result<(TcpHeader, Payload), PopPacketError> {
self.with_state(|state| state.pop_packet())
}
#[inline]
pub fn clear_error(&mut self) -> Option<TcpError> {
self.0.as_mut().unwrap().clear_error()
}
#[inline]
pub fn poll(&self) -> PollState {
self.0.as_ref().unwrap().poll()
}
#[inline]
pub fn wants_to_send(&self) -> bool {
self.0.as_ref().unwrap().wants_to_send()
}
#[inline]
pub fn local_remote_addrs(&self) -> Option<(SocketAddrV4, SocketAddrV4)> {
self.0.as_ref().unwrap().local_remote_addrs()
}
}
/// A macro that forwards an argument-less method to the inner type.
///
/// ```ignore
/// // forward!(as_init, Option<&InitState<X>>);
/// #[inline]
/// pub fn as_init(&self) -> Option<&InitState<X>> {
/// self.0.as_ref().unwrap().as_init()
/// }
/// ```
#[cfg(test)]
macro_rules! forward {
($fn_name:ident, $($return_type:tt)*) => {
#[inline]
pub fn $fn_name(&self) -> $($return_type)* {
self.0.as_ref().unwrap().$fn_name()
}
};
}
#[cfg(test)]
impl<X: Dependencies> TcpState<X> {
forward!(as_init, Option<&InitState<X>>);
forward!(as_listen, Option<&ListenState<X>>);
forward!(as_syn_sent, Option<&SynSentState<X>>);
forward!(as_syn_received, Option<&SynReceivedState<X>>);
forward!(as_established, Option<&EstablishedState<X>>);
forward!(as_fin_wait_one, Option<&FinWaitOneState<X>>);
forward!(as_fin_wait_two, Option<&FinWaitTwoState<X>>);
forward!(as_closing, Option<&ClosingState<X>>);
forward!(as_time_wait, Option<&TimeWaitState<X>>);
forward!(as_close_wait, Option<&CloseWaitState<X>>);
forward!(as_last_ack, Option<&LastAckState<X>>);
forward!(as_rst, Option<&RstState<X>>);
forward!(as_closed, Option<&ClosedState<X>>);
}
#[enum_dispatch::enum_dispatch(TcpStateTrait<X>)]
#[derive(Debug)]
enum TcpStateEnum<X: Dependencies> {
Init(InitState<X>),
Listen(ListenState<X>),
SynSent(SynSentState<X>),
SynReceived(SynReceivedState<X>),
Established(EstablishedState<X>),
FinWaitOne(FinWaitOneState<X>),
FinWaitTwo(FinWaitTwoState<X>),
Closing(ClosingState<X>),
TimeWait(TimeWaitState<X>),
CloseWait(CloseWaitState<X>),
LastAck(LastAckState<X>),
Rst(RstState<X>),
Closed(ClosedState<X>),
}
/// A macro that creates a method which casts to an inner variant.
///
/// ```ignore
/// // as_impl!(as_init, Init, InitState);
/// #[inline]
/// pub fn as_init(&self) -> Option<&InitState<X>> {
/// match self {
/// Self::Init(x) => Some(x),
/// _ => None,
/// }
/// }
/// ```
#[cfg(test)]
macro_rules! as_impl {
($fn_name:ident, $variant:ident, $return_type:ident) => {
#[inline]
pub fn $fn_name(&self) -> Option<&$return_type<X>> {
match self {
Self::$variant(x) => Some(x),
_ => None,
}
}
};
}
/// Casts to concrete types. This should only be called from unit tests to verify state.
#[cfg(test)]
impl<X: Dependencies> TcpStateEnum<X> {
as_impl!(as_init, Init, InitState);
as_impl!(as_listen, Listen, ListenState);
as_impl!(as_syn_sent, SynSent, SynSentState);
as_impl!(as_syn_received, SynReceived, SynReceivedState);
as_impl!(as_established, Established, EstablishedState);
as_impl!(as_fin_wait_one, FinWaitOne, FinWaitOneState);
as_impl!(as_fin_wait_two, FinWaitTwo, FinWaitTwoState);
as_impl!(as_closing, Closing, ClosingState);
as_impl!(as_time_wait, TimeWait, TimeWaitState);
as_impl!(as_close_wait, CloseWait, CloseWaitState);
as_impl!(as_last_ack, LastAck, LastAckState);
as_impl!(as_rst, Rst, RstState);
as_impl!(as_closed, Closed, ClosedState);
}
/// An accept()ed TCP state. This is used to ensure that the caller uses
/// [`finalize`](Self::finalize) to update the state's `Dependencies` since the state is no longer
/// owned by the listening socket.
// we use a wrapper struct around an enum so that public code can't access the inner state object
pub struct AcceptedTcpState<X: Dependencies>(AcceptedTcpStateInner<X>);
/// An "established" or "close-wait" TCP state can be accept()ed, so we need to be able to store
/// either state.
enum AcceptedTcpStateInner<X: Dependencies> {
Established(EstablishedState<X>),
CloseWait(CloseWaitState<X>),
}
impl<X: Dependencies> AcceptedTcpState<X> {
/// This allows the caller to update the state's `Dependencies`.
///
/// This must be called immediately after [`TcpState::accept`], otherwise the accept()ed socket
/// may miss some of its timer events.
pub fn finalize(mut self, f: impl FnOnce(&mut X)) -> TcpState<X> {
let deps = match &mut self.0 {
AcceptedTcpStateInner::Established(state) => &mut state.common.deps,
AcceptedTcpStateInner::CloseWait(state) => &mut state.common.deps,
};
// allow the caller to update `deps` for this state since this state is changing owners
f(deps);
TcpState(Some(self.0.into()))
}
pub fn local_addr(&self) -> SocketAddrV4 {
match &self.0 {
AcceptedTcpStateInner::Established(state) => state.connection.local_addr,
AcceptedTcpStateInner::CloseWait(state) => state.connection.local_addr,
}
}
pub fn remote_addr(&self) -> SocketAddrV4 {
match &self.0 {
AcceptedTcpStateInner::Established(state) => state.connection.remote_addr,
AcceptedTcpStateInner::CloseWait(state) => state.connection.remote_addr,
}
}
}
impl<X: Dependencies> TryFrom<TcpStateEnum<X>> for AcceptedTcpState<X> {
type Error = TcpStateEnum<X>;
fn try_from(state: TcpStateEnum<X>) -> Result<Self, Self::Error> {
match state {
TcpStateEnum::Established(state) => Ok(Self(AcceptedTcpStateInner::Established(state))),
TcpStateEnum::CloseWait(state) => Ok(Self(AcceptedTcpStateInner::CloseWait(state))),
// return the state back to the caller
state => Err(state),
}
}
}
impl<X: Dependencies> From<AcceptedTcpStateInner<X>> for TcpStateEnum<X> {
fn from(inner: AcceptedTcpStateInner<X>) -> Self {
match inner {
AcceptedTcpStateInner::Established(state) => state.into(),
AcceptedTcpStateInner::CloseWait(state) => state.into(),
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Shutdown {
Read,
Write,
Both,
}
#[derive(Debug)]
pub enum TcpError {
ResetSent,
ResetReceived,
/// The connection was closed while it was connecting, and no RST was sent or received.
ClosedWhileConnecting,
TimedOut,
}
// errors for operations on `TcpStateTrait` objects
#[derive(Debug)]
pub enum CloseError {
InvalidState,
}
#[derive(Debug)]
enum RstCloseError {
InvalidState,
}
#[derive(Debug)]
pub enum ListenError<E> {
InvalidState,
FailedAssociation(E),
}
#[derive(Debug)]
pub enum ConnectError<E> {
InvalidState,
/// A previous connection attempt is in progress.
InProgress,
/// A connection has previously been attempted and was either successful or unsuccessful (it may
/// or may not have reached the "established" state). The connection may be established, timed
/// out, closing, half-closed, closed, etc. This does not include connection attempts that are
/// in progress ("syn-sent" or "syn-received" states).
AlreadyConnected,
/// Is already listening for new connections.
IsListening,
FailedAssociation(E),
}
#[derive(Debug)]
pub enum AcceptError {
InvalidState,
NothingToAccept,
}
#[derive(Debug)]
pub enum ShutdownError {
NotConnected,
InvalidState,
}
#[derive(Debug)]
pub enum SendError {
InvalidState,
Full,
NotConnected,
StreamClosed,
Io(std::io::Error),
}
#[derive(Debug)]
pub enum RecvError {
InvalidState,
Empty,
NotConnected,
/// The peer has sent a FIN, so no more data will be received.
StreamClosed,
Io(std::io::Error),
}
#[derive(Debug)]
pub enum PushPacketError {
InvalidState,
}
#[derive(Debug)]
pub enum PopPacketError {
InvalidState,
NoPacket,
}
// segment/packet headers
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct PollState: u32 {
/// Data can be read.
const READABLE = 1 << 0;
/// Data can be written.
const WRITABLE = 1 << 1;
/// There is a pending error that can be read using [`TcpState::clear_error`].
const ERROR = 1 << 2;
/// The connection has been closed for receiving. This is not mutually exclusive with
/// `READABLE` (even if it's closed for receiving, there may still be buffered data to
/// read). Some possible causes are:
/// - Received a FIN packet.
/// - Sent or received a RST packet.
/// - TCP was closed.
const RECV_CLOSED = 1 << 3;
/// The connection has been closed for sending. This should be mutually exclusive with
/// `WRITABLE` (there would be no point in writing data if it's closed for sending). Some
/// possible causes are:
/// - Sent a FIN packet.
/// - Sent or received a RST packet.
/// - TCP was `shutdown()` for writing.
/// - TCP was closed.
const SEND_CLOSED = 1 << 4;
/// Is listening for new connections.
const LISTENING = 1 << 5;
/// A listening socket has a new incoming connection that can be accepted.
const READY_TO_ACCEPT = 1 << 6;
/// Connection is in the process of opening. More specifically this means that it is in
/// either the "syn-sent" or "syn-received" states.
const CONNECTING = 1 << 7;
/// A connection has previously been attempted and was either successful or unsuccessful (it
/// may or may not have reached the "established" state). The connection may be established,
/// timed out, closing, half-closed, closed, etc. This does not include connection attempts
/// that are in progress ("syn-sent" or "syn-received" states).
const CONNECTED = 1 << 8;
/// TCP is fully closed (in the "closed" state). This may not be set immediately after a
/// `close()` call, for example if `close()` was called while in the "established" state,
/// and now is in the "fin-wait-1" state. This does not include the initial state (we don't
/// consider a new TCP to be "closed").
const CLOSED = 1 << 9;
}
}
#[derive(Copy, Clone, Debug)]
pub struct TcpConfig {
pub(crate) window_scaling_enabled: bool,
}
impl TcpConfig {
pub fn window_scaling(&mut self, enable: bool) {
self.window_scaling_enabled = enable;
}
}
impl Default for TcpConfig {
fn default() -> Self {
Self {
window_scaling_enabled: true,
}
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TcpFlags: u8 {
const FIN = 1 << 0;
const SYN = 1 << 1;
const RST = 1 << 2;
const PSH = 1 << 3;
const ACK = 1 << 4;
const URG = 1 << 5;
const ECE = 1 << 6;
const CWR = 1 << 7;
}
}
#[derive(Copy, Clone, Debug)]
pub struct TcpHeader {
pub ip: Ipv4Header,
pub flags: TcpFlags,
pub src_port: u16,
pub dst_port: u16,
pub seq: u32,
pub ack: u32,
pub window_size: u16,
pub selective_acks: Option<SmallArrayBackedSlice<4, (u32, u32)>>,
pub window_scale: Option<u8>,
pub timestamp: Option<u32>,
pub timestamp_echo: Option<u32>,
}
impl TcpHeader {
pub fn src(&self) -> SocketAddrV4 {
SocketAddrV4::new(self.ip.src, self.src_port)
}
pub fn dst(&self) -> SocketAddrV4 {
SocketAddrV4::new(self.ip.dst, self.dst_port)
}
}
#[derive(Copy, Clone, Debug)]
pub struct Ipv4Header {
pub src: Ipv4Addr,
pub dst: Ipv4Addr,
}
/// A packet payload containing a list of [byte](Bytes) chunks.
///
/// The sum of the lengths of each chunk must be at most [`u32::MAX`], otherwise operations on the
/// payload or other code using the payload may panic.
// TODO: Intuitively this seems like a good place to use a `SmallVec` to optimize the common case
// where there are a small number of chunks per packet. But I'm leaving this until we can test `Vec`
// vs `SmallVec` in a benchmark to see if there's any performance improvement in practice.
#[derive(Clone, Debug, Default)]
pub struct Payload(pub Vec<Bytes>);
// We don't implement `PartialEq` or `Eq` since it's not clear what equality means. Are payloads
// equal if they just contain the same bytes, or are they equal only if the chunks are exactly the
// same? For example is the payload `["hello", "world"]` the same as `["helloworld"]`?
static_assertions::assert_not_impl_any!(Payload: PartialEq, Eq);
impl Payload {
/// Returns the number of bytes in the payload.
pub fn len(&self) -> u32 {
self.0
.iter()
// `fold` rather than `sum` so that we always panic on overflow
.fold(0usize, |acc, x| acc.checked_add(x.len()).unwrap())
.try_into()
.unwrap()
}
/// Returns true if the payload has no data (no byte chunks or only empty byte chunks).
pub fn is_empty(&self) -> bool {
// should be faster than checking `self.len() == 0`
self.0.iter().all(|x| x.len() == 0)
}
/// Concatenate the byte chunks into a single byte chunk. Unless the payload is empty or has a
/// single chunk, this will allocate a large buffer and copy all of the individual chunks to
/// this new buffer.
pub fn concat(&self) -> Bytes {
let num_bytes = self.len() as usize;
let num_chunks = self.0.len();
if num_bytes == 0 {
return Bytes::new();
}
if num_chunks == 1 {
// there's only one chunk, so just return a reference to the chunk
return self.0[0].clone();
}
let mut bytes = BytesMut::with_capacity(num_bytes);
for chunk in &self.0 {
bytes.extend_from_slice(chunk);
}
debug_assert_eq!(bytes.len(), bytes.capacity());
bytes.freeze()
}
}
impl From<Bytes> for Payload {
fn from(bytes: Bytes) -> Self {
Self(vec![bytes])
}
}
impl From<BytesMut> for Payload {
fn from(bytes: BytesMut) -> Self {
bytes.freeze().into()
}
}