bytes/bytes_mut.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
use core::iter::{FromIterator, Iterator};
use core::mem::{self, ManuallyDrop};
use core::ops::{Deref, DerefMut};
use core::ptr::{self, NonNull};
use core::{cmp, fmt, hash, isize, slice, usize};
use alloc::{
borrow::{Borrow, BorrowMut},
boxed::Box,
string::String,
vec,
vec::Vec,
};
use crate::buf::{IntoIter, UninitSlice};
use crate::bytes::Vtable;
#[allow(unused)]
use crate::loom::sync::atomic::AtomicMut;
use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use crate::{Buf, BufMut, Bytes};
/// A unique reference to a contiguous slice of memory.
///
/// `BytesMut` represents a unique view into a potentially shared memory region.
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
/// mutate the memory.
///
/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
/// same `buf` overlaps with its slice. That guarantee means that a write lock
/// is not required.
///
/// # Growth
///
/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
/// necessary. However, explicitly reserving the required space up-front before
/// a series of inserts will be more efficient.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(64);
///
/// buf.put_u8(b'h');
/// buf.put_u8(b'e');
/// buf.put(&b"llo"[..]);
///
/// assert_eq!(&buf[..], b"hello");
///
/// // Freeze the buffer so that it can be shared
/// let a = buf.freeze();
///
/// // This does not allocate, instead `b` points to the same memory.
/// let b = a.clone();
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
pub struct BytesMut {
ptr: NonNull<u8>,
len: usize,
cap: usize,
data: *mut Shared,
}
// Thread-safe reference-counted container for the shared storage. This mostly
// the same as `core::sync::Arc` but without the weak counter. The ref counting
// fns are based on the ones found in `std`.
//
// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
// up making the overall code simpler and easier to reason about. This is due to
// some of the logic around setting `Inner::arc` and other ways the `arc` field
// is used. Using `Arc` ended up requiring a number of funky transmutes and
// other shenanigans to make it work.
struct Shared {
vec: Vec<u8>,
original_capacity_repr: usize,
ref_count: AtomicUsize,
}
// Buffer storage strategy flags.
const KIND_ARC: usize = 0b0;
const KIND_VEC: usize = 0b1;
const KIND_MASK: usize = 0b1;
// The max original capacity value. Any `Bytes` allocated with a greater initial
// capacity will default to this.
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
// The original capacity algorithm will not take effect unless the originally
// allocated capacity was at least 1kb in size.
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
// The original capacity is stored in powers of 2 starting at 1kb to a max of
// 64kb. Representing it as such requires only 3 bits of storage.
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
// When the storage is in the `Vec` representation, the pointer can be advanced
// at most this value. This is due to the amount of storage available to track
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
// bits.
const VEC_POS_OFFSET: usize = 5;
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
const NOT_VEC_POS_MASK: usize = 0b11111;
#[cfg(target_pointer_width = "64")]
const PTR_WIDTH: usize = 64;
#[cfg(target_pointer_width = "32")]
const PTR_WIDTH: usize = 32;
/*
*
* ===== BytesMut =====
*
*/
impl BytesMut {
/// Creates a new `BytesMut` with the specified capacity.
///
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
/// without reallocating.
///
/// It is important to note that this function does not specify the length
/// of the returned `BytesMut`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.put(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> BytesMut {
BytesMut::from_vec(Vec::with_capacity(capacity))
}
/// Creates a new `BytesMut` with default capacity.
///
/// Resulting object has length 0 and unspecified capacity.
/// This function does not allocate.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::new();
///
/// assert_eq!(0, bytes.len());
///
/// bytes.reserve(2);
/// bytes.put_slice(b"xy");
///
/// assert_eq!(&b"xy"[..], &bytes[..]);
/// ```
#[inline]
pub fn new() -> BytesMut {
BytesMut::with_capacity(0)
}
/// Returns the number of bytes contained in this `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns true if the `BytesMut` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert!(b.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert_eq!(b.capacity(), 64);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.cap
}
/// Converts `self` into an immutable `Bytes`.
///
/// The conversion is zero cost and is used to indicate that the slice
/// referenced by the handle will no longer be mutated. Once the conversion
/// is done, the handle can be cloned and shared across threads.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
/// use std::thread;
///
/// let mut b = BytesMut::with_capacity(64);
/// b.put(&b"hello world"[..]);
/// let b1 = b.freeze();
/// let b2 = b1.clone();
///
/// let th = thread::spawn(move || {
/// assert_eq!(&b1[..], b"hello world");
/// });
///
/// assert_eq!(&b2[..], b"hello world");
/// th.join().unwrap();
/// ```
#[inline]
pub fn freeze(mut self) -> Bytes {
if self.kind() == KIND_VEC {
// Just re-use `Bytes` internal Vec vtable
unsafe {
let (off, _) = self.get_vec_pos();
let vec = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
mem::forget(self);
let mut b: Bytes = vec.into();
b.advance(off);
b
}
} else {
debug_assert_eq!(self.kind(), KIND_ARC);
let ptr = self.ptr.as_ptr();
let len = self.len;
let data = AtomicPtr::new(self.data.cast());
mem::forget(self);
unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
}
}
/// Creates a new `BytesMut`, which is initialized with zero.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let zeros = BytesMut::zeroed(42);
///
/// assert_eq!(zeros.len(), 42);
/// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
/// ```
pub fn zeroed(len: usize) -> BytesMut {
BytesMut::from_vec(vec![0; len])
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned
/// `BytesMut` contains elements `[at, capacity)`.
///
/// This is an `O(1)` operation that just increases the reference count
/// and sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_off(5);
///
/// a[0] = b'j';
/// b[0] = b'!';
///
/// assert_eq!(&a[..], b"jello");
/// assert_eq!(&b[..], b"!world");
/// ```
///
/// # Panics
///
/// Panics if `at > capacity`.
#[must_use = "consider BytesMut::truncate if you don't need the other half"]
pub fn split_off(&mut self, at: usize) -> BytesMut {
assert!(
at <= self.capacity(),
"split_off out of bounds: {:?} <= {:?}",
at,
self.capacity(),
);
unsafe {
let mut other = self.shallow_clone();
other.set_start(at);
self.set_end(at);
other
}
}
/// Removes the bytes from the current view, returning them in a new
/// `BytesMut` handle.
///
/// Afterwards, `self` will be empty, but will retain any additional
/// capacity that it had before the operation. This is identical to
/// `self.split_to(self.len())`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(1024);
/// buf.put(&b"hello world"[..]);
///
/// let other = buf.split();
///
/// assert!(buf.is_empty());
/// assert_eq!(1013, buf.capacity());
///
/// assert_eq!(other, b"hello world"[..]);
/// ```
#[must_use = "consider BytesMut::advance(len()) if you don't need the other half"]
pub fn split(&mut self) -> BytesMut {
let len = self.len();
self.split_to(len)
}
/// Splits the buffer into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
/// contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_to(5);
///
/// a[0] = b'!';
/// b[0] = b'j';
///
/// assert_eq!(&a[..], b"!world");
/// assert_eq!(&b[..], b"jello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider BytesMut::advance if you don't need the other half"]
pub fn split_to(&mut self, at: usize) -> BytesMut {
assert!(
at <= self.len(),
"split_to out of bounds: {:?} <= {:?}",
at,
self.len(),
);
unsafe {
let mut other = self.shallow_clone();
other.set_end(at);
self.set_start(at);
other
}
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// Existing underlying capacity is preserved.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
if len <= self.len() {
unsafe {
self.set_len(len);
}
}
}
/// Clears the buffer, removing all data. Existing capacity is preserved.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Resizes the buffer so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the buffer is extended by the
/// difference with each additional byte set to `value`. If `new_len` is
/// less than `len`, the buffer is simply truncated.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::new();
///
/// buf.resize(3, 0x1);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
///
/// buf.resize(2, 0x2);
/// assert_eq!(&buf[..], &[0x1, 0x1]);
///
/// buf.resize(4, 0x3);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
/// ```
pub fn resize(&mut self, new_len: usize, value: u8) {
let len = self.len();
if new_len > len {
let additional = new_len - len;
self.reserve(additional);
unsafe {
let dst = self.chunk_mut().as_mut_ptr();
ptr::write_bytes(dst, value, additional);
self.set_len(new_len);
}
} else {
self.truncate(new_len);
}
}
/// Sets the length of the buffer.
///
/// This will explicitly set the size of the buffer without actually
/// modifying the data, so it is up to the caller to ensure that the data
/// has been initialized.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut b = BytesMut::from(&b"hello world"[..]);
///
/// unsafe {
/// b.set_len(5);
/// }
///
/// assert_eq!(&b[..], b"hello");
///
/// unsafe {
/// b.set_len(11);
/// }
///
/// assert_eq!(&b[..], b"hello world");
/// ```
#[inline]
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.cap, "set_len out of bounds");
self.len = len;
}
/// Reserves capacity for at least `additional` more bytes to be inserted
/// into the given `BytesMut`.
///
/// More than `additional` bytes may be reserved in order to avoid frequent
/// reallocations. A call to `reserve` may result in an allocation.
///
/// Before allocating new buffer space, the function will attempt to reclaim
/// space in the existing buffer. If the current handle references a view
/// into a larger original buffer, and all other handles referencing part
/// of the same original buffer have been dropped, then the current view
/// can be copied/shifted to the front of the buffer and the handle can take
/// ownership of the full buffer, provided that the full buffer is large
/// enough to fit the requested additional capacity.
///
/// This optimization will only happen if shifting the data from the current
/// view to the front of the buffer is not too expensive in terms of the
/// (amortized) time required. The precise condition is subject to change;
/// as of now, the length of the data being shifted needs to be at least as
/// large as the distance that it's shifted by. If the current view is empty
/// and the original buffer is large enough to fit the requested additional
/// capacity, then reallocations will never happen.
///
/// # Examples
///
/// In the following example, a new buffer is allocated.
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello"[..]);
/// buf.reserve(64);
/// assert!(buf.capacity() >= 69);
/// ```
///
/// In the following example, the existing buffer is reclaimed.
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(128);
/// buf.put(&[0; 64][..]);
///
/// let ptr = buf.as_ptr();
/// let other = buf.split();
///
/// assert!(buf.is_empty());
/// assert_eq!(buf.capacity(), 64);
///
/// drop(other);
/// buf.reserve(128);
///
/// assert_eq!(buf.capacity(), 128);
/// assert_eq!(buf.as_ptr(), ptr);
/// ```
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
#[inline]
pub fn reserve(&mut self, additional: usize) {
let len = self.len();
let rem = self.capacity() - len;
if additional <= rem {
// The handle can already store at least `additional` more bytes, so
// there is no further work needed to be done.
return;
}
self.reserve_inner(additional);
}
// In separate function to allow the short-circuits in `reserve` to
// be inline-able. Significant helps performance.
fn reserve_inner(&mut self, additional: usize) {
let len = self.len();
let kind = self.kind();
if kind == KIND_VEC {
// If there's enough free space before the start of the buffer, then
// just copy the data backwards and reuse the already-allocated
// space.
//
// Otherwise, since backed by a vector, use `Vec::reserve`
//
// We need to make sure that this optimization does not kill the
// amortized runtimes of BytesMut's operations.
unsafe {
let (off, prev) = self.get_vec_pos();
// Only reuse space if we can satisfy the requested additional space.
//
// Also check if the value of `off` suggests that enough bytes
// have been read to account for the overhead of shifting all
// the data (in an amortized analysis).
// Hence the condition `off >= self.len()`.
//
// This condition also already implies that the buffer is going
// to be (at least) half-empty in the end; so we do not break
// the (amortized) runtime with future resizes of the underlying
// `Vec`.
//
// [For more details check issue #524, and PR #525.]
if self.capacity() - self.len() + off >= additional && off >= self.len() {
// There's enough space, and it's not too much overhead:
// reuse the space!
//
// Just move the pointer back to the start after copying
// data back.
let base_ptr = self.ptr.as_ptr().offset(-(off as isize));
// Since `off >= self.len()`, the two regions don't overlap.
ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
self.ptr = vptr(base_ptr);
self.set_vec_pos(0, prev);
// Length stays constant, but since we moved backwards we
// can gain capacity back.
self.cap += off;
} else {
// Not enough space, or reusing might be too much overhead:
// allocate more space!
let mut v =
ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
v.reserve(additional);
// Update the info
self.ptr = vptr(v.as_mut_ptr().add(off));
self.len = v.len() - off;
self.cap = v.capacity() - off;
}
return;
}
}
debug_assert_eq!(kind, KIND_ARC);
let shared: *mut Shared = self.data;
// Reserving involves abandoning the currently shared buffer and
// allocating a new vector with the requested capacity.
//
// Compute the new capacity
let mut new_cap = len.checked_add(additional).expect("overflow");
let original_capacity;
let original_capacity_repr;
unsafe {
original_capacity_repr = (*shared).original_capacity_repr;
original_capacity = original_capacity_from_repr(original_capacity_repr);
// First, try to reclaim the buffer. This is possible if the current
// handle is the only outstanding handle pointing to the buffer.
if (*shared).is_unique() {
// This is the only handle to the buffer. It can be reclaimed.
// However, before doing the work of copying data, check to make
// sure that the vector has enough capacity.
let v = &mut (*shared).vec;
let v_capacity = v.capacity();
let ptr = v.as_mut_ptr();
let offset = offset_from(self.ptr.as_ptr(), ptr);
// Compare the condition in the `kind == KIND_VEC` case above
// for more details.
if v_capacity >= new_cap + offset {
self.cap = new_cap;
// no copy is necessary
} else if v_capacity >= new_cap && offset >= len {
// The capacity is sufficient, and copying is not too much
// overhead: reclaim the buffer!
// `offset >= len` means: no overlap
ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
self.ptr = vptr(ptr);
self.cap = v.capacity();
} else {
// calculate offset
let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
// new_cap is calculated in terms of `BytesMut`, not the underlying
// `Vec`, so it does not take the offset into account.
//
// Thus we have to manually add it here.
new_cap = new_cap.checked_add(off).expect("overflow");
// The vector capacity is not sufficient. The reserve request is
// asking for more than the initial buffer capacity. Allocate more
// than requested if `new_cap` is not much bigger than the current
// capacity.
//
// There are some situations, using `reserve_exact` that the
// buffer capacity could be below `original_capacity`, so do a
// check.
let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
new_cap = cmp::max(double, new_cap);
// No space - allocate more
v.reserve(new_cap - v.len());
// Update the info
self.ptr = vptr(v.as_mut_ptr().add(off));
self.cap = v.capacity() - off;
}
return;
} else {
new_cap = cmp::max(new_cap, original_capacity);
}
}
// Create a new vector to store the data
let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
// Copy the bytes
v.extend_from_slice(self.as_ref());
// Release the shared handle. This must be done *after* the bytes are
// copied.
unsafe { release_shared(shared) };
// Update self
let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
self.data = invalid_ptr(data);
self.ptr = vptr(v.as_mut_ptr());
self.len = v.len();
self.cap = v.capacity();
}
/// Appends given bytes to this `BytesMut`.
///
/// If this `BytesMut` object does not have enough capacity, it is resized
/// first.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(0);
/// buf.extend_from_slice(b"aaabbb");
/// buf.extend_from_slice(b"cccddd");
///
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
let cnt = extend.len();
self.reserve(cnt);
unsafe {
let dst = self.uninit_slice();
// Reserved above
debug_assert!(dst.len() >= cnt);
ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr(), cnt);
}
unsafe {
self.advance_mut(cnt);
}
}
/// Absorbs a `BytesMut` that was previously split off if they are
/// contiguous, otherwise appends its bytes to this `BytesMut`.
///
/// If the two `BytesMut` objects were previously contiguous and not mutated
/// in a way that causes re-allocation i.e., if `other` was created by
/// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
/// that just decreases a reference count and sets a few indices.
/// Otherwise this method degenerates to
/// `self.extend_from_slice(other.as_ref())`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(64);
/// buf.extend_from_slice(b"aaabbbcccddd");
///
/// let split = buf.split_off(6);
/// assert_eq!(b"aaabbb", &buf[..]);
/// assert_eq!(b"cccddd", &split[..]);
///
/// buf.unsplit(split);
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn unsplit(&mut self, other: BytesMut) {
if self.is_empty() {
*self = other;
return;
}
if let Err(other) = self.try_unsplit(other) {
self.extend_from_slice(other.as_ref());
}
}
// private
// For now, use a `Vec` to manage the memory for us, but we may want to
// change that in the future to some alternate allocator strategy.
//
// Thus, we don't expose an easy way to construct from a `Vec` since an
// internal change could make a simple pattern (`BytesMut::from(vec)`)
// suddenly a lot more expensive.
#[inline]
pub(crate) fn from_vec(mut vec: Vec<u8>) -> BytesMut {
let ptr = vptr(vec.as_mut_ptr());
let len = vec.len();
let cap = vec.capacity();
mem::forget(vec);
let original_capacity_repr = original_capacity_to_repr(cap);
let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
BytesMut {
ptr,
len,
cap,
data: invalid_ptr(data),
}
}
#[inline]
fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
}
#[inline]
fn as_slice_mut(&mut self) -> &mut [u8] {
unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
}
unsafe fn set_start(&mut self, start: usize) {
// Setting the start to 0 is a no-op, so return early if this is the
// case.
if start == 0 {
return;
}
debug_assert!(start <= self.cap, "internal: set_start out of bounds");
let kind = self.kind();
if kind == KIND_VEC {
// Setting the start when in vec representation is a little more
// complicated. First, we have to track how far ahead the
// "start" of the byte buffer from the beginning of the vec. We
// also have to ensure that we don't exceed the maximum shift.
let (mut pos, prev) = self.get_vec_pos();
pos += start;
if pos <= MAX_VEC_POS {
self.set_vec_pos(pos, prev);
} else {
// The repr must be upgraded to ARC. This will never happen
// on 64 bit systems and will only happen on 32 bit systems
// when shifting past 134,217,727 bytes. As such, we don't
// worry too much about performance here.
self.promote_to_shared(/*ref_count = */ 1);
}
}
// Updating the start of the view is setting `ptr` to point to the
// new start and updating the `len` field to reflect the new length
// of the view.
self.ptr = vptr(self.ptr.as_ptr().add(start));
if self.len >= start {
self.len -= start;
} else {
self.len = 0;
}
self.cap -= start;
}
unsafe fn set_end(&mut self, end: usize) {
debug_assert_eq!(self.kind(), KIND_ARC);
assert!(end <= self.cap, "set_end out of bounds");
self.cap = end;
self.len = cmp::min(self.len, end);
}
/// Absorbs a `BytesMut` that was previously split off.
///
/// If the two `BytesMut` objects were previously contiguous, i.e., if
/// `other` was created by calling `split_off` on this `BytesMut`, then
/// this is an `O(1)` operation that just decreases a reference
/// count and sets a few indices. Otherwise this method returns an error
/// containing the original `other`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(64);
/// buf.extend_from_slice(b"aaabbbcccddd");
///
/// let mut split_1 = buf.split_off(3);
/// let split_2 = split_1.split_off(3);
/// assert_eq!(b"aaa", &buf[..]);
/// assert_eq!(b"bbb", &split_1[..]);
/// assert_eq!(b"cccddd", &split_2[..]);
///
/// let split_2 = buf.try_unsplit(split_2).unwrap_err();
///
/// buf.try_unsplit(split_1).unwrap();
/// buf.try_unsplit(split_2).unwrap();
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
if other.capacity() == 0 {
return Ok(());
}
let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
if ptr == other.ptr.as_ptr()
&& self.kind() == KIND_ARC
&& other.kind() == KIND_ARC
&& self.data == other.data
{
// Contiguous blocks, just combine directly
self.len += other.len;
self.cap += other.cap;
Ok(())
} else {
Err(other)
}
}
#[inline]
fn kind(&self) -> usize {
self.data as usize & KIND_MASK
}
unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
debug_assert!(ref_cnt == 1 || ref_cnt == 2);
let original_capacity_repr =
(self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
// The vec offset cannot be concurrently mutated, so there
// should be no danger reading it.
let off = (self.data as usize) >> VEC_POS_OFFSET;
// First, allocate a new `Shared` instance containing the
// `Vec` fields. It's important to note that `ptr`, `len`,
// and `cap` cannot be mutated without having `&mut self`.
// This means that these fields will not be concurrently
// updated and since the buffer hasn't been promoted to an
// `Arc`, those three fields still are the components of the
// vector.
let shared = Box::new(Shared {
vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
original_capacity_repr,
ref_count: AtomicUsize::new(ref_cnt),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
self.data = shared;
}
/// Makes an exact shallow clone of `self`.
///
/// The kind of `self` doesn't matter, but this is unsafe
/// because the clone will have the same offsets. You must
/// be sure the returned value to the user doesn't allow
/// two views into the same range.
#[inline]
unsafe fn shallow_clone(&mut self) -> BytesMut {
if self.kind() == KIND_ARC {
increment_shared(self.data);
ptr::read(self)
} else {
self.promote_to_shared(/*ref_count = */ 2);
ptr::read(self)
}
}
#[inline]
unsafe fn get_vec_pos(&mut self) -> (usize, usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
let prev = self.data as usize;
(prev >> VEC_POS_OFFSET, prev)
}
#[inline]
unsafe fn set_vec_pos(&mut self, pos: usize, prev: usize) {
debug_assert_eq!(self.kind(), KIND_VEC);
debug_assert!(pos <= MAX_VEC_POS);
self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK));
}
#[inline]
fn uninit_slice(&mut self) -> &mut UninitSlice {
unsafe {
let ptr = self.ptr.as_ptr().add(self.len);
let len = self.cap - self.len;
UninitSlice::from_raw_parts_mut(ptr, len)
}
}
}
impl Drop for BytesMut {
fn drop(&mut self) {
let kind = self.kind();
if kind == KIND_VEC {
unsafe {
let (off, _) = self.get_vec_pos();
// Vector storage, free the vector
let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
}
} else if kind == KIND_ARC {
unsafe { release_shared(self.data) };
}
}
}
impl Buf for BytesMut {
#[inline]
fn remaining(&self) -> usize {
self.len()
}
#[inline]
fn chunk(&self) -> &[u8] {
self.as_slice()
}
#[inline]
fn advance(&mut self, cnt: usize) {
assert!(
cnt <= self.remaining(),
"cannot advance past `remaining`: {:?} <= {:?}",
cnt,
self.remaining(),
);
unsafe {
self.set_start(cnt);
}
}
fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
self.split_to(len).freeze()
}
}
unsafe impl BufMut for BytesMut {
#[inline]
fn remaining_mut(&self) -> usize {
usize::MAX - self.len()
}
#[inline]
unsafe fn advance_mut(&mut self, cnt: usize) {
let new_len = self.len() + cnt;
assert!(
new_len <= self.cap,
"new_len = {}; capacity = {}",
new_len,
self.cap
);
self.len = new_len;
}
#[inline]
fn chunk_mut(&mut self) -> &mut UninitSlice {
if self.capacity() == self.len() {
self.reserve(64);
}
self.uninit_slice()
}
// Specialize these methods so they can skip checking `remaining_mut`
// and `advance_mut`.
fn put<T: crate::Buf>(&mut self, mut src: T)
where
Self: Sized,
{
while src.has_remaining() {
let s = src.chunk();
let l = s.len();
self.extend_from_slice(s);
src.advance(l);
}
}
fn put_slice(&mut self, src: &[u8]) {
self.extend_from_slice(src);
}
fn put_bytes(&mut self, val: u8, cnt: usize) {
self.reserve(cnt);
unsafe {
let dst = self.uninit_slice();
// Reserved above
debug_assert!(dst.len() >= cnt);
ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
self.advance_mut(cnt);
}
}
}
impl AsRef<[u8]> for BytesMut {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl Deref for BytesMut {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_ref()
}
}
impl AsMut<[u8]> for BytesMut {
#[inline]
fn as_mut(&mut self) -> &mut [u8] {
self.as_slice_mut()
}
}
impl DerefMut for BytesMut {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl<'a> From<&'a [u8]> for BytesMut {
fn from(src: &'a [u8]) -> BytesMut {
BytesMut::from_vec(src.to_vec())
}
}
impl<'a> From<&'a str> for BytesMut {
fn from(src: &'a str) -> BytesMut {
BytesMut::from(src.as_bytes())
}
}
impl From<BytesMut> for Bytes {
fn from(src: BytesMut) -> Bytes {
src.freeze()
}
}
impl PartialEq for BytesMut {
fn eq(&self, other: &BytesMut) -> bool {
self.as_slice() == other.as_slice()
}
}
impl PartialOrd for BytesMut {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl Ord for BytesMut {
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl Eq for BytesMut {}
impl Default for BytesMut {
#[inline]
fn default() -> BytesMut {
BytesMut::new()
}
}
impl hash::Hash for BytesMut {
fn hash<H>(&self, state: &mut H)
where
H: hash::Hasher,
{
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for BytesMut {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl BorrowMut<[u8]> for BytesMut {
fn borrow_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl fmt::Write for BytesMut {
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
if self.remaining_mut() >= s.len() {
self.put_slice(s.as_bytes());
Ok(())
} else {
Err(fmt::Error)
}
}
#[inline]
fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
fmt::write(self, args)
}
}
impl Clone for BytesMut {
fn clone(&self) -> BytesMut {
BytesMut::from(&self[..])
}
}
impl IntoIterator for BytesMut {
type Item = u8;
type IntoIter = IntoIter<BytesMut>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
impl<'a> IntoIterator for &'a BytesMut {
type Item = &'a u8;
type IntoIter = core::slice::Iter<'a, u8>;
fn into_iter(self) -> Self::IntoIter {
self.as_ref().iter()
}
}
impl Extend<u8> for BytesMut {
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = u8>,
{
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
// TODO: optimize
// 1. If self.kind() == KIND_VEC, use Vec::extend
// 2. Make `reserve` inline-able
for b in iter {
self.reserve(1);
self.put_u8(b);
}
}
}
impl<'a> Extend<&'a u8> for BytesMut {
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = &'a u8>,
{
self.extend(iter.into_iter().copied())
}
}
impl Extend<Bytes> for BytesMut {
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = Bytes>,
{
for bytes in iter {
self.extend_from_slice(&bytes)
}
}
}
impl FromIterator<u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
BytesMut::from_vec(Vec::from_iter(into_iter))
}
}
impl<'a> FromIterator<&'a u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
BytesMut::from_iter(into_iter.into_iter().copied())
}
}
/*
*
* ===== Inner =====
*
*/
unsafe fn increment_shared(ptr: *mut Shared) {
let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
if old_size > isize::MAX as usize {
crate::abort();
}
}
unsafe fn release_shared(ptr: *mut Shared) {
// `Shared` storage... follow the drop steps from Arc.
if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
//
// Thread sanitizer does not support atomic fences. Use an atomic load
// instead.
(*ptr).ref_count.load(Ordering::Acquire);
// Drop the data
drop(Box::from_raw(ptr));
}
impl Shared {
fn is_unique(&self) -> bool {
// The goal is to check if the current handle is the only handle
// that currently has access to the buffer. This is done by
// checking if the `ref_count` is currently 1.
//
// The `Acquire` ordering synchronizes with the `Release` as
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
// operation guarantees that any mutations done in other threads
// are ordered before the `ref_count` is decremented. As such,
// this `Acquire` will guarantee that those mutations are
// visible to the current thread.
self.ref_count.load(Ordering::Acquire) == 1
}
}
#[inline]
fn original_capacity_to_repr(cap: usize) -> usize {
let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
cmp::min(
width,
MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
)
}
fn original_capacity_from_repr(repr: usize) -> usize {
if repr == 0 {
return 0;
}
1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
}
/*
#[test]
fn test_original_capacity_to_repr() {
assert_eq!(original_capacity_to_repr(0), 0);
let max_width = 32;
for width in 1..(max_width + 1) {
let cap = 1 << width - 1;
let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
0
} else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
width - MIN_ORIGINAL_CAPACITY_WIDTH
} else {
MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
};
assert_eq!(original_capacity_to_repr(cap), expected);
if width > 1 {
assert_eq!(original_capacity_to_repr(cap + 1), expected);
}
// MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
assert_eq!(original_capacity_to_repr(cap + 76), expected);
} else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
}
}
}
#[test]
fn test_original_capacity_from_repr() {
assert_eq!(0, original_capacity_from_repr(0));
let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
assert_eq!(min_cap, original_capacity_from_repr(1));
assert_eq!(min_cap * 2, original_capacity_from_repr(2));
assert_eq!(min_cap * 4, original_capacity_from_repr(3));
assert_eq!(min_cap * 8, original_capacity_from_repr(4));
assert_eq!(min_cap * 16, original_capacity_from_repr(5));
assert_eq!(min_cap * 32, original_capacity_from_repr(6));
assert_eq!(min_cap * 64, original_capacity_from_repr(7));
}
*/
unsafe impl Send for BytesMut {}
unsafe impl Sync for BytesMut {}
/*
*
* ===== PartialEq / PartialOrd =====
*
*/
impl PartialEq<[u8]> for BytesMut {
fn eq(&self, other: &[u8]) -> bool {
&**self == other
}
}
impl PartialOrd<[u8]> for BytesMut {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
(**self).partial_cmp(other)
}
}
impl PartialEq<BytesMut> for [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<str> for BytesMut {
fn eq(&self, other: &str) -> bool {
&**self == other.as_bytes()
}
}
impl PartialOrd<str> for BytesMut {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Vec<u8>> for BytesMut {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == other[..]
}
}
impl PartialOrd<Vec<u8>> for BytesMut {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
(**self).partial_cmp(&other[..])
}
}
impl PartialEq<BytesMut> for Vec<u8> {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for Vec<u8> {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for BytesMut {
fn eq(&self, other: &String) -> bool {
*self == other[..]
}
}
impl PartialOrd<String> for BytesMut {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for String {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for String {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
where
BytesMut: PartialEq<T>,
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
where
BytesMut: PartialOrd<T>,
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(*other)
}
}
impl PartialEq<BytesMut> for &[u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for &[u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<BytesMut> for &str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for &str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<BytesMut> for Bytes {
fn eq(&self, other: &BytesMut) -> bool {
other[..] == self[..]
}
}
impl PartialEq<Bytes> for BytesMut {
fn eq(&self, other: &Bytes) -> bool {
other[..] == self[..]
}
}
impl From<BytesMut> for Vec<u8> {
fn from(mut bytes: BytesMut) -> Self {
let kind = bytes.kind();
let mut vec = if kind == KIND_VEC {
unsafe {
let (off, _) = bytes.get_vec_pos();
rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
}
} else if kind == KIND_ARC {
let shared = bytes.data as *mut Shared;
if unsafe { (*shared).is_unique() } {
let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
unsafe { release_shared(shared) };
vec
} else {
return bytes.deref().to_vec();
}
} else {
return bytes.deref().to_vec();
};
let len = bytes.len;
unsafe {
ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
vec.set_len(len);
}
mem::forget(bytes);
vec
}
}
#[inline]
fn vptr(ptr: *mut u8) -> NonNull<u8> {
if cfg!(debug_assertions) {
NonNull::new(ptr).expect("Vec pointer should be non-null")
} else {
unsafe { NonNull::new_unchecked(ptr) }
}
}
/// Returns a dangling pointer with the given address. This is used to store
/// integer data in pointer fields.
///
/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
/// provenance checking is enabled.
#[inline]
fn invalid_ptr<T>(addr: usize) -> *mut T {
let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
debug_assert_eq!(ptr as usize, addr);
ptr.cast::<T>()
}
/// Precondition: dst >= original
///
/// The following line is equivalent to:
///
/// ```rust,ignore
/// self.ptr.as_ptr().offset_from(ptr) as usize;
/// ```
///
/// But due to min rust is 1.39 and it is only stablised
/// in 1.47, we cannot use it.
#[inline]
fn offset_from(dst: *mut u8, original: *mut u8) -> usize {
debug_assert!(dst >= original);
dst as usize - original as usize
}
unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
let ptr = ptr.offset(-(off as isize));
len += off;
cap += off;
Vec::from_raw_parts(ptr, len, cap)
}
// ===== impl SharedVtable =====
static SHARED_VTABLE: Vtable = Vtable {
clone: shared_v_clone,
to_vec: shared_v_to_vec,
drop: shared_v_drop,
};
unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
let shared = data.load(Ordering::Relaxed) as *mut Shared;
increment_shared(shared);
let data = AtomicPtr::new(shared as *mut ());
Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
}
unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
if (*shared).is_unique() {
let shared = &mut *shared;
// Drop shared
let mut vec = mem::replace(&mut shared.vec, Vec::new());
release_shared(shared);
// Copy back buffer
ptr::copy(ptr, vec.as_mut_ptr(), len);
vec.set_len(len);
vec
} else {
let v = slice::from_raw_parts(ptr, len).to_vec();
release_shared(shared);
v
}
}
unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
data.with_mut(|shared| {
release_shared(*shared as *mut Shared);
});
}
// compile-fails
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split_to(6);
/// }
/// ```
fn _split_to_must_use() {}
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split_off(6);
/// }
/// ```
fn _split_off_must_use() {}
/// ```compile_fail
/// use bytes::BytesMut;
/// #[deny(unused_must_use)]
/// {
/// let mut b1 = BytesMut::from("hello world");
/// b1.split();
/// }
/// ```
fn _split_must_use() {}
// fuzz tests
#[cfg(all(test, loom))]
mod fuzz {
use loom::sync::Arc;
use loom::thread;
use super::BytesMut;
use crate::Bytes;
#[test]
fn bytes_mut_cloning_frozen() {
loom::model(|| {
let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
let addr = a.as_ptr() as usize;
// test the Bytes::clone is Sync by putting it in an Arc
let a1 = Arc::new(a);
let a2 = a1.clone();
let t1 = thread::spawn(move || {
let b: Bytes = (*a1).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
let t2 = thread::spawn(move || {
let b: Bytes = (*a2).clone();
assert_eq!(b.as_ptr() as usize, addr);
});
t1.join().unwrap();
t2.join().unwrap();
});
}
}