shadow_rs/host/
managed_thread.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
//! A thread of a managed process.
//!
//! This contains the code where the simulator can create or communicate with a managed process.

use std::cell::{Cell, RefCell};
use std::ffi::{CStr, CString};
use std::io::Write;
use std::os::fd::AsRawFd;
use std::os::unix::prelude::OsStrExt;
use std::path::PathBuf;
use std::sync::{atomic, Arc};

use linux_api::errno::Errno;
use linux_api::posix_types::Pid;
use linux_api::sched::CloneFlags;
use linux_api::signal::tgkill;
use log::{debug, error, log_enabled, trace, Level};
use rustix::pipe::PipeFlags;
use rustix::process::WaitOptions;
use shadow_shim_helper_rs::ipc::IPCData;
use shadow_shim_helper_rs::shim_event::{
    ShimEventAddThreadReq, ShimEventAddThreadRes, ShimEventSyscall, ShimEventSyscallComplete,
    ShimEventToShadow, ShimEventToShim,
};
use shadow_shim_helper_rs::syscall_types::{ForeignPtr, SyscallArgs, SyscallReg};
use shadow_shmem::allocator::ShMemBlock;
use vasi_sync::scchannel::SelfContainedChannelError;

use super::context::ThreadContext;
use super::host::Host;
use super::syscall::condition::SyscallCondition;
use crate::core::worker::{Worker, WORKER_SHARED};
use crate::cshadow;
use crate::host::syscall::handler::SyscallHandler;
use crate::host::syscall::types::{ForeignArrayPtr, SyscallReturn};
use crate::utility::{inject_preloads, syscall, verify_plugin_path, VerifyPluginPathError};

/// The ManagedThread's state after having been allowed to execute some code.
#[derive(Debug)]
#[must_use]
pub enum ResumeResult {
    /// Blocked on a SyscallCondition.
    Blocked(SyscallCondition),
    /// The native thread has exited with the given code.
    ExitedThread(i32),
    /// The thread's process has exited.
    ExitedProcess,
}

pub struct ManagedThread {
    ipc_shmem: Arc<ShMemBlock<'static, IPCData>>,
    is_running: Cell<bool>,
    return_code: Cell<Option<i32>>,

    /* holds the event for the most recent call from the plugin/shim */
    current_event: RefCell<ShimEventToShadow>,

    native_pid: linux_api::posix_types::Pid,
    native_tid: linux_api::posix_types::Pid,

    // Value storing the current CPU affinity of the thread (more precisely,
    // of the native thread backing this thread object). This value will be set
    // to AFFINITY_UNINIT if CPU pinning is not enabled or if the thread has
    // not yet been pinned to a CPU.
    affinity: Cell<i32>,
}

impl ManagedThread {
    pub fn native_pid(&self) -> linux_api::posix_types::Pid {
        self.native_pid
    }

    pub fn native_tid(&self) -> linux_api::posix_types::Pid {
        self.native_tid
    }

    /// Make the specified syscall on the native thread.
    ///
    /// Panics if the native thread is dead or dies during the syscall,
    /// including if the syscall itself is SYS_exit or SYS_exit_group.
    pub fn native_syscall(&self, ctx: &ThreadContext, n: i64, args: &[SyscallReg]) -> SyscallReg {
        let mut syscall_args = SyscallArgs {
            number: n,
            args: [SyscallReg::from(0u64); 6],
        };
        syscall_args.args[..args.len()].copy_from_slice(args);
        match self.continue_plugin(
            ctx.host,
            &ShimEventToShim::Syscall(ShimEventSyscall { syscall_args }),
        ) {
            ShimEventToShadow::SyscallComplete(res) => res.retval,
            other => panic!("Unexpected response from plugin: {other:?}"),
        }
    }

    pub fn spawn(
        plugin_path: &CStr,
        argv: Vec<CString>,
        envv: Vec<CString>,
        strace_file: Option<&std::fs::File>,
        log_file: &std::fs::File,
        injected_preloads: &[PathBuf],
    ) -> Result<Self, Errno> {
        debug!("spawning new mthread '{plugin_path:?}' with environment '{envv:?}', arguments '{argv:?}'");

        let envv = inject_preloads(envv, injected_preloads);

        debug!("env after preload injection: {envv:?}");

        let ipc_shmem = Arc::new(shadow_shmem::allocator::shmalloc(IPCData::new()));

        let child_pid =
            Self::spawn_native(plugin_path, argv, envv, strace_file, log_file, &ipc_shmem)?;

        // In Linux, the PID is equal to the TID of its first thread.
        let native_pid = child_pid;
        let native_tid = child_pid;

        // Configure the child_pid_watcher to close the IPC channel when the child dies.
        {
            let worker = WORKER_SHARED.borrow();
            let watcher = worker.as_ref().unwrap().child_pid_watcher();

            watcher.register_pid(child_pid);
            let ipc = ipc_shmem.clone();
            watcher.register_callback(child_pid, move |_pid| {
                ipc.from_plugin().close_writer();
            })
        };

        trace!(
            "waiting for start event from shim with native pid {:?}",
            native_pid
        );
        let start_req = ipc_shmem.from_plugin().receive().unwrap();
        match &start_req {
            ShimEventToShadow::StartReq(_) => {
                // Expected result; shim is ready to initialize.
            }
            ShimEventToShadow::ProcessDeath => {
                // The process died before initializing the shim.
                //
                // Reap the dead process and return an error.
                let status =
                    rustix::process::waitpid(Some(native_pid.into()), WaitOptions::empty())
                        .unwrap()
                        .unwrap();
                if status.exit_status() == Some(127) {
                    // posix_spawn(3):
                    // > If  the child  fails  in  any  of the
                    // > housekeeping steps described below, or fails to
                    // > execute the desired file, it exits with a status of
                    // > 127.
                    debug!("posix_spawn failed to exec the process");
                    // Assume that execve failed, and return a plausible reason
                    // why it might have done so.
                    // TODO: replace our usage of posix_spawn with a custom
                    // implementation that can return the execve failure code?
                    return Err(Errno::EPERM);
                }
                // TODO: handle more gracefully.
                // * The native stdout/stderr might have a clue as to
                // why the process died.  Consider logging a hint to
                // check it (currently in the corresponding shimlog), or
                // directly capture it and display it here.
                // https://github.com/shadow/shadow/issues/3142
                // * Consider logging a warning here and continuing on to handle
                // the managed process exit normally. e.g. when this happens
                // as part of an emulated `execve`, we might want to continue
                // the simulation.
                panic!("Child process died unexpectedly before initialization: {status:?}");
            }
            other => panic!("Unexpected result from shim: {other:?}"),
        };

        Ok(Self {
            ipc_shmem,
            is_running: Cell::new(true),
            return_code: Cell::new(None),
            current_event: RefCell::new(start_req),
            native_pid,
            native_tid,
            affinity: Cell::new(cshadow::AFFINITY_UNINIT),
        })
    }

    pub fn resume(
        &self,
        ctx: &ThreadContext,
        syscall_handler: &mut SyscallHandler,
    ) -> ResumeResult {
        debug_assert!(self.is_running());

        self.sync_affinity_with_worker();

        // Flush any pending writes, e.g. from a previous mthread that exited
        // without flushing.
        ctx.process.free_unsafe_borrows_flush().unwrap();

        loop {
            let mut current_event = self.current_event.borrow_mut();
            let last_event = *current_event;
            *current_event = match last_event {
                ShimEventToShadow::StartReq(start_req) => {
                    // Write the serialized thread shmem handle directly to shim
                    // memory.
                    ctx.process
                        .memory_borrow_mut()
                        .write(
                            start_req.thread_shmem_block_to_init,
                            &ctx.thread.shmem().serialize(),
                        )
                        .unwrap();

                    if !start_req.process_shmem_block_to_init.is_null() {
                        // Write the serialized process shmem handle directly to
                        // shim memory.
                        ctx.process
                            .memory_borrow_mut()
                            .write(
                                start_req.process_shmem_block_to_init,
                                &ctx.process.shmem().serialize(),
                            )
                            .unwrap();
                    }

                    if !start_req.initial_working_dir_to_init.is_null() {
                        // Write the working dir.
                        let mut mem = ctx.process.memory_borrow_mut();
                        let mut writer = mem.writer(ForeignArrayPtr::new(
                            start_req.initial_working_dir_to_init,
                            start_req.initial_working_dir_to_init_len,
                        ));
                        writer
                            .write_all(ctx.process.current_working_dir().to_bytes_with_nul())
                            .unwrap();
                        writer.flush().unwrap();
                    }

                    // send the message to the shim to call main().
                    trace!("sending start event code to shim");
                    self.continue_plugin(ctx.host, &ShimEventToShim::StartRes)
                }
                ShimEventToShadow::ProcessDeath => {
                    // The native threads are all dead or zombies. Nothing to do but
                    // clean up.
                    self.cleanup_after_exit_initiated();
                    return ResumeResult::ExitedProcess;
                }
                ShimEventToShadow::Syscall(syscall) => {
                    // Emulate the given syscall.

                    // `exit` is tricky since it only exits the *mthread*, and we don't have a way
                    // to be notified that the mthread has exited. We have to "fire and forget"
                    // the command to execute the syscall natively.
                    //
                    // TODO: We could use a tid futex in shared memory, as set by
                    // `set_tid_address`, to block here until the thread has
                    // actually exited.
                    if syscall.syscall_args.number == libc::SYS_exit {
                        let return_code = syscall.syscall_args.args[0].into();
                        debug!("Short-circuiting syscall exit({return_code})");
                        self.return_code.set(Some(return_code));
                        // Tell mthread to go ahead and make the exit syscall itself.
                        // We *don't* call `_managedthread_continuePlugin` here,
                        // since that'd release the ShimSharedMemHostLock, and we
                        // aren't going to get a message back to know when it'd be
                        // safe to take it again.
                        self.ipc_shmem
                            .to_plugin()
                            .send(ShimEventToShim::SyscallDoNative);
                        self.cleanup_after_exit_initiated();
                        return ResumeResult::ExitedThread(return_code);
                    }

                    let scr = syscall_handler.syscall(ctx, &syscall.syscall_args).into();

                    // remove the mthread's old syscall condition since it's no longer needed
                    ctx.thread.cleanup_syscall_condition();

                    assert!(self.is_running());

                    // Flush any writes that legacy C syscallhandlers may have
                    // made.
                    ctx.process.free_unsafe_borrows_flush().unwrap();

                    match scr {
                        SyscallReturn::Block(b) => {
                            return ResumeResult::Blocked(unsafe {
                                SyscallCondition::consume_from_c(b.cond)
                            })
                        }
                        SyscallReturn::Done(d) => self.continue_plugin(
                            ctx.host,
                            &ShimEventToShim::SyscallComplete(ShimEventSyscallComplete {
                                retval: d.retval,
                                restartable: d.restartable,
                            }),
                        ),
                        SyscallReturn::Native => {
                            self.continue_plugin(ctx.host, &ShimEventToShim::SyscallDoNative)
                        }
                    }
                }
                ShimEventToShadow::AddThreadRes(res) => {
                    // We get here in the child process after forking.

                    // Child should have gotten 0 back from its native clone syscall.
                    assert_eq!(res.clone_res, 0);

                    // Complete the virtualized clone syscall.
                    self.continue_plugin(
                        ctx.host,
                        &ShimEventToShim::SyscallComplete(ShimEventSyscallComplete {
                            retval: 0.into(),
                            restartable: false,
                        }),
                    )
                }
                e @ ShimEventToShadow::SyscallComplete(_) => panic!("Unexpected event: {e:?}"),
            };
            assert!(self.is_running());
        }
    }

    pub fn handle_process_exit(&self) {
        // TODO: Only do this once per process; maybe by moving into `Process`.
        WORKER_SHARED
            .borrow()
            .as_ref()
            .unwrap()
            .child_pid_watcher()
            .unregister_pid(self.native_pid());

        self.cleanup_after_exit_initiated();
    }

    pub fn return_code(&self) -> Option<i32> {
        self.return_code.get()
    }

    pub fn is_running(&self) -> bool {
        self.is_running.get()
    }

    /// Execute the specified `clone` syscall in `self`, and use create a new
    /// `ManagedThread` object to manage it. The new thread will be managed
    /// by Shadow, and suitable for use with `Thread::wrap_mthread`.
    ///
    /// If the `clone` syscall fails, the native error is returned.
    pub fn native_clone(
        &self,
        ctx: &ThreadContext,
        flags: CloneFlags,
        child_stack: ForeignPtr<()>,
        ptid: ForeignPtr<libc::pid_t>,
        ctid: ForeignPtr<libc::pid_t>,
        newtls: libc::c_ulong,
    ) -> Result<ManagedThread, linux_api::errno::Errno> {
        let child_ipc_shmem = Arc::new(shadow_shmem::allocator::shmalloc(IPCData::new()));

        // Send the IPC block for the new mthread to use.
        let clone_res: i64 = match self.continue_plugin(
            ctx.host,
            &ShimEventToShim::AddThreadReq(ShimEventAddThreadReq {
                ipc_block: child_ipc_shmem.serialize(),
                flags: flags.bits(),
                child_stack,
                ptid: ptid.cast::<()>(),
                ctid: ctid.cast::<()>(),
                newtls,
            }),
        ) {
            ShimEventToShadow::AddThreadRes(ShimEventAddThreadRes { clone_res }) => clone_res,
            r => panic!("Unexpected result: {r:?}"),
        };
        let clone_res: SyscallReg = syscall::raw_return_value_to_result(clone_res)?;
        let child_native_tid = Pid::from_raw(libc::pid_t::from(clone_res)).unwrap();
        trace!("native clone treated tid {child_native_tid:?}");

        trace!(
            "waiting for start event from shim with native tid {:?}",
            child_native_tid
        );
        let start_req = child_ipc_shmem.from_plugin().receive().unwrap();
        match &start_req {
            ShimEventToShadow::StartReq(_) => (),
            other => panic!("Unexpected result from shim: {other:?}"),
        };

        let native_pid = if flags.contains(CloneFlags::CLONE_THREAD) {
            self.native_pid
        } else {
            child_native_tid
        };

        if !flags.contains(CloneFlags::CLONE_THREAD) {
            // Child is a new process; register it.
            WORKER_SHARED
                .borrow()
                .as_ref()
                .unwrap()
                .child_pid_watcher()
                .register_pid(native_pid);
        }

        // Register the child thread's IPC block with the ChildPidWatcher.
        {
            let child_ipc_shmem = child_ipc_shmem.clone();
            WORKER_SHARED
                .borrow()
                .as_ref()
                .unwrap()
                .child_pid_watcher()
                .register_callback(native_pid, move |_pid| {
                    child_ipc_shmem.from_plugin().close_writer();
                })
        };

        Ok(Self {
            ipc_shmem: child_ipc_shmem,
            is_running: Cell::new(true),
            return_code: Cell::new(None),
            current_event: RefCell::new(start_req),
            native_pid,
            native_tid: child_native_tid,
            // TODO: can we assume it's inherited from the current thread affinity?
            affinity: Cell::new(cshadow::AFFINITY_UNINIT),
        })
    }

    #[must_use]
    fn continue_plugin(&self, host: &Host, event: &ShimEventToShim) -> ShimEventToShadow {
        // Update shared state before transferring control.
        host.shim_shmem_lock_borrow_mut().unwrap().max_runahead_time =
            Worker::max_event_runahead_time(host);
        host.shim_shmem()
            .sim_time
            .store(Worker::current_time().unwrap(), atomic::Ordering::Relaxed);

        // Release lock so that plugin can take it. Reacquired in `wait_for_next_event`.
        host.unlock_shmem();

        self.ipc_shmem.to_plugin().send(*event);

        let event = match self.ipc_shmem.from_plugin().receive() {
            Ok(e) => e,
            Err(SelfContainedChannelError::WriterIsClosed) => ShimEventToShadow::ProcessDeath,
        };

        // Reacquire the shared memory lock, now that the shim has yielded control
        // back to us.
        host.lock_shmem();

        // Update time, which may have been incremented in the shim.
        let shim_time = host.shim_shmem().sim_time.load(atomic::Ordering::Relaxed);
        if log_enabled!(Level::Trace) {
            let worker_time = Worker::current_time().unwrap();
            if shim_time != worker_time {
                trace!(
                    "Updating time from {worker_time:?} to {shim_time:?} (+{:?})",
                    shim_time - worker_time
                );
            }
        }
        Worker::set_current_time(shim_time);

        event
    }

    /// To be called after we expect the native thread to have exited, or to
    /// exit imminently.
    fn cleanup_after_exit_initiated(&self) {
        if !self.is_running.get() {
            return;
        }
        self.wait_for_native_exit();
        trace!("child {:?} exited", self.native_tid());
        self.is_running.set(false);
    }

    /// Wait until the managed thread is no longer running.
    fn wait_for_native_exit(&self) {
        let native_pid = self.native_pid();
        let native_tid = self.native_tid();

        // We use `tgkill` and `/proc/x/stat` to detect whether the thread is still running,
        // looping until it doesn't.
        //
        // Alternatively we could use `set_tid_address` or `set_robust_list` to
        // be notified on a futex. Those are a bit underdocumented and fragile,
        // though. In practice this shouldn't have to loop significantly.
        trace!("Waiting for native thread {native_pid:?}.{native_tid:?} to exit");
        loop {
            if self.ipc_shmem.from_plugin().writer_is_closed() {
                // This indicates that the whole process has stopped executing;
                // no need to poll the individual thread.
                break;
            }
            match tgkill(native_pid, native_tid, None) {
                Err(Errno::ESRCH) => {
                    trace!("Thread is done exiting; proceeding with cleanup");
                    break;
                }
                Err(e) => {
                    error!("Unexpected tgkill error: {:?}", e);
                    break;
                }
                Ok(()) if native_pid == native_tid => {
                    // Thread leader could be in a zombie state waiting for
                    // the other threads to exit.
                    let filename = format!("/proc/{}/stat", native_pid.as_raw_nonzero().get());
                    let stat = match std::fs::read_to_string(filename) {
                        Err(e) => {
                            assert!(e.kind() == std::io::ErrorKind::NotFound);
                            trace!("tgl {native_pid:?} is fully dead");
                            break;
                        }
                        Ok(s) => s,
                    };
                    if stat.contains(") Z") {
                        trace!("tgl {native_pid:?} is a zombie");
                        break;
                    }
                    // Still alive and in a non-zombie state; continue
                }
                Ok(()) => {
                    // Thread is still alive; continue.
                }
            };
            std::thread::yield_now();
        }
    }

    fn sync_affinity_with_worker(&self) {
        let current_affinity = scheduler::core_affinity()
            .map(|x| i32::try_from(x).unwrap())
            .unwrap_or(cshadow::AFFINITY_UNINIT);
        self.affinity.set(unsafe {
            cshadow::affinity_setProcessAffinity(
                self.native_tid().as_raw_nonzero().get(),
                current_affinity,
                self.affinity.get(),
            )
        });
    }

    fn spawn_native(
        plugin_path: &CStr,
        argv: Vec<CString>,
        envv: Vec<CString>,
        strace_file: Option<&std::fs::File>,
        shimlog_file: &std::fs::File,
        shmem_block: &ShMemBlock<IPCData>,
    ) -> Result<Pid, Errno> {
        // Preemptively check for likely reasons that execve might fail.
        // In particular we want to ensure that we  don't launch a statically
        // linked executable, since we'd then deadlock the whole simulation
        // waiting for the plugin to initialize.
        //
        // This is also helpful since we can't retrieve specific `execve` errors
        // through `posix_spawn`.
        fn map_verify_err(e: VerifyPluginPathError) -> Errno {
            match e {
                // execve(2): ENOENT The file pathname [...] does not exist.
                VerifyPluginPathError::NotFound => Errno::ENOENT,
                // execve(2): EACCES The file or a script interpreter is not a regular file.
                VerifyPluginPathError::NotFile => Errno::EACCES,
                // execve(2): EACCES Execute permission is denied for the file or a script or ELF interpreter.
                VerifyPluginPathError::NotExecutable => Errno::EACCES,
                // execve(2): ENOEXEC An executable is not in a recognized
                // format, is for the wrong architecture, or has some other
                // format error that means it cannot be executed.
                VerifyPluginPathError::UnknownFileType => Errno::ENOEXEC,
                VerifyPluginPathError::NotDynamicallyLinkedElf => Errno::ENOEXEC,
                VerifyPluginPathError::IncompatibleInterpreter(e) => map_verify_err(*e),
                // execve(2): EACCES Search permission is denied on a component
                // of the path prefix of pathname or the name of a script
                // interpreter.
                VerifyPluginPathError::PathPermissionDenied => Errno::EACCES,
                VerifyPluginPathError::UnhandledIoError(_) => {
                    // Arbitrary error that should be handled by callers.
                    Errno::ENOEXEC
                }
            }
        }
        verify_plugin_path(std::ffi::OsStr::from_bytes(plugin_path.to_bytes()))
            .map_err(map_verify_err)?;

        // posix_spawn is documented as taking pointers to *mutable* char for argv and
        // envv. It *probably* doesn't actually mutate them, but we
        // conservatively give it what it asks for. We have to "reconstitute"
        // the CString's after the fork + exec to deallocate them.
        let argv_ptrs: Vec<*mut i8> = argv
            .into_iter()
            .map(CString::into_raw)
            // the last element of argv must be NULL
            .chain(std::iter::once(std::ptr::null_mut()))
            .collect();
        let envv_ptrs: Vec<*mut i8> = envv
            .into_iter()
            .map(CString::into_raw)
            // the last element of argv must be NULL
            .chain(std::iter::once(std::ptr::null_mut()))
            .collect();

        let mut file_actions: libc::posix_spawn_file_actions_t = shadow_pod::zeroed();
        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawn_file_actions_init(&mut file_actions)
        })
        .unwrap();

        // Set up stdin
        let (stdin_reader, stdin_writer) = rustix::pipe::pipe_with(PipeFlags::CLOEXEC).unwrap();
        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawn_file_actions_adddup2(
                &mut file_actions,
                stdin_reader.as_raw_fd(),
                libc::STDIN_FILENO,
            )
        })
        .unwrap();

        // Dup straceFd; the dup'd descriptor won't have O_CLOEXEC set.
        //
        // Since dup2 is a no-op when the new and old file descriptors are equal, we have
        // to arrange to call dup2 twice - first to a temporary descriptor, and then back
        // to the original descriptor number.
        //
        // Here we use STDOUT_FILENO as the temporary descriptor, since we later
        // replace that below.
        //
        // Once we drop support for platforms with glibc older than 2.29, we *could*
        // consider taking advantage of a new feature that would let us just use a
        // single `posix_spawn_file_actions_adddup2` call with equal descriptors.
        // OTOH it's a non-standard extension, and I think ultimately uses the same
        // number of syscalls, so it might be better to continue using this slightly
        // more awkward method anyway.
        // https://github.com/bminor/glibc/commit/805334b26c7e6e83557234f2008497c72176a6cd
        // https://austingroupbugs.net/view.php?id=411
        if let Some(strace_file) = strace_file {
            Errno::result_from_libc_errnum(unsafe {
                libc::posix_spawn_file_actions_adddup2(
                    &mut file_actions,
                    strace_file.as_raw_fd(),
                    libc::STDOUT_FILENO,
                )
            })
            .unwrap();
            Errno::result_from_libc_errnum(unsafe {
                libc::posix_spawn_file_actions_adddup2(
                    &mut file_actions,
                    libc::STDOUT_FILENO,
                    strace_file.as_raw_fd(),
                )
            })
            .unwrap();
        }

        // set stdout/stderr as the shim log. This also clears the FD_CLOEXEC flag.
        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawn_file_actions_adddup2(
                &mut file_actions,
                shimlog_file.as_raw_fd(),
                libc::STDOUT_FILENO,
            )
        })
        .unwrap();
        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawn_file_actions_adddup2(
                &mut file_actions,
                shimlog_file.as_raw_fd(),
                libc::STDERR_FILENO,
            )
        })
        .unwrap();

        let mut spawn_attr: libc::posix_spawnattr_t = shadow_pod::zeroed();
        Errno::result_from_libc_errnum(unsafe { libc::posix_spawnattr_init(&mut spawn_attr) })
            .unwrap();

        // In versions of glibc before 2.24, we need this to tell posix_spawn
        // to use vfork instead of fork. In later versions it's a no-op.
        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawnattr_setflags(
                &mut spawn_attr,
                libc::POSIX_SPAWN_USEVFORK.try_into().unwrap(),
            )
        })
        .unwrap();

        let child_pid_res = {
            let mut child_pid = -1;
            Errno::result_from_libc_errnum(unsafe {
                libc::posix_spawn(
                    &mut child_pid,
                    plugin_path.as_ptr(),
                    &file_actions,
                    &spawn_attr,
                    argv_ptrs.as_ptr(),
                    envv_ptrs.as_ptr(),
                )
            })
            .map(|_| Pid::from_raw(child_pid).unwrap_or_else(|| panic!("Invalid pid: {child_pid}")))
        };

        // Write the serialized shmem descriptor to the stdin pipe. The pipe
        // buffer should be large enough that we can write it all without having
        // to wait for data to be read.
        if child_pid_res.is_ok() {
            // we avoid using the rustix write wrapper here, since we can't guarantee
            // that all bytes of the serialized shmem block are initd, and hence
            // can't safely construct the &[u8] that it wants.
            let serialized = shmem_block.serialize();
            let serialized_bytes = shadow_pod::as_u8_slice(&serialized);
            let written = Errno::result_from_libc_errno(-1, unsafe {
                libc::write(
                    stdin_writer.as_raw_fd(),
                    serialized_bytes.as_ptr().cast(),
                    serialized_bytes.len(),
                )
            })
            .unwrap();
            // TODO: loop if needed. Shouldn't be in practice, though.
            assert_eq!(written, isize::try_from(serialized_bytes.len()).unwrap());
        }

        Errno::result_from_libc_errnum(unsafe {
            libc::posix_spawn_file_actions_destroy(&mut file_actions)
        })
        .unwrap();
        Errno::result_from_libc_errnum(unsafe { libc::posix_spawnattr_destroy(&mut spawn_attr) })
            .unwrap();

        // Drop the cloned argv and env.
        drop(
            argv_ptrs
                .into_iter()
                .filter(|p| !p.is_null())
                .map(|p| unsafe { CString::from_raw(p) }),
        );
        drop(
            envv_ptrs
                .into_iter()
                .filter(|p| !p.is_null())
                .map(|p| unsafe { CString::from_raw(p) }),
        );

        debug!(
            "starting process {}, result: {child_pid_res:?}",
            plugin_path.to_str().unwrap()
        );

        child_pid_res
    }

    /// `ManagedThread` panics if dropped while the underlying process is still running,
    /// since otherwise that process could continue writing to shared memory regions
    /// that shadow reallocates.
    ///
    /// This method kills the process that `self` belongs to (not just the
    /// thread!) and then drops `self`.
    pub fn kill_and_drop(self) {
        if let Err(err) =
            rustix::process::kill_process(self.native_pid().into(), rustix::process::Signal::Kill)
        {
            log::warn!(
                "Couldn't kill managed process {:?}. kill: {:?}",
                self.native_pid(),
                err
            );
        }
        self.handle_process_exit();
    }
}

impl Drop for ManagedThread {
    fn drop(&mut self) {
        // Dropping while the thread is running is unsound because the running
        // thread still has access to shared memory regions that will be
        // deallocated, and potentially reallocated for another purpose. The
        // running thread accessing a deallocated or repurposed memory region
        // can cause numerous problems.
        assert!(!self.is_running());
    }
}