petgraph/acyclic/
order_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//! A bijective map between node indices and a `TopologicalPosition`, to store
//! the total topological order of the graph.
//!
//! This data structure is an implementation detail and is not exposed in the
//! public API.
use std::{collections::BTreeMap, fmt, ops::RangeBounds};

use crate::{
    algo::{toposort, Cycle},
    visit::{GraphBase, IntoNeighborsDirected, IntoNodeIdentifiers, NodeIndexable, Visitable},
};

/// A position in the topological order of the graph.
///
/// This defines a total order over the set of nodes in the graph.
///
/// Note that the positions of all nodes in a graph may not form a contiguous
/// interval.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Default)]
#[repr(transparent)]
pub struct TopologicalPosition(pub(super) usize);

/// A bijective map between node indices and their position in a topological order.
///
/// Note that this map does not check for injectivity or surjectivity, this
/// must be enforced by the user. Map mutations that invalidate these properties
/// are allowed to make it easy to perform batch modifications that temporarily
/// break the invariants.
#[derive(Clone)]
pub(super) struct OrderMap<N> {
    /// Map topological position to node index.
    pos_to_node: BTreeMap<TopologicalPosition, N>,
    /// The inverse of `pos_to_node`, i.e. map node indices to their position.
    ///
    /// This is a Vec, relying on `N: NodeIndexable` for indexing.
    node_to_pos: Vec<TopologicalPosition>,
}

impl<N> Default for OrderMap<N> {
    fn default() -> Self {
        Self {
            pos_to_node: Default::default(),
            node_to_pos: Default::default(),
        }
    }
}

impl<N: fmt::Debug> fmt::Debug for OrderMap<N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("OrderMap")
            .field("order", &self.pos_to_node)
            .finish()
    }
}

impl<N: Copy> OrderMap<N> {
    pub(super) fn try_from_graph<G>(graph: G) -> Result<Self, Cycle<G::NodeId>>
    where
        G: NodeIndexable<NodeId = N> + IntoNeighborsDirected + IntoNodeIdentifiers + Visitable,
    {
        // Compute the topological order.
        let topo_vec = toposort(graph, None)?;

        // Create the two map directions.
        let mut pos_to_node = BTreeMap::new();
        let mut node_to_pos = vec![TopologicalPosition::default(); graph.node_bound()];

        // Populate the maps.
        for (i, &id) in topo_vec.iter().enumerate() {
            let pos = TopologicalPosition(i);
            pos_to_node.insert(pos, id);
            node_to_pos[graph.to_index(id)] = pos;
        }

        Ok(Self {
            pos_to_node,
            node_to_pos,
        })
    }

    pub(super) fn with_capacity(nodes: usize) -> Self {
        Self {
            pos_to_node: BTreeMap::new(),
            node_to_pos: Vec::with_capacity(nodes),
        }
    }

    /// Map a node to its position in the topological order.
    ///
    /// Panics if the node index is out of bounds.
    pub(super) fn get_position(
        &self,
        id: N,
        graph: impl NodeIndexable<NodeId = N>,
    ) -> TopologicalPosition {
        let idx = graph.to_index(id);
        assert!(idx < self.node_to_pos.len());
        self.node_to_pos[idx]
    }

    /// Map a position in the topological order to a node, if it exists.
    pub(super) fn at_position(&self, pos: TopologicalPosition) -> Option<N> {
        self.pos_to_node.get(&pos).copied()
    }

    /// Get an iterator over the nodes, ordered by their position.
    pub(super) fn nodes_iter(&self) -> impl Iterator<Item = N> + '_ {
        self.pos_to_node.values().copied()
    }

    /// Get an iterator over the nodes within the range of positions.
    pub(super) fn range(
        &self,
        range: impl RangeBounds<TopologicalPosition>,
    ) -> impl Iterator<Item = N> + '_ {
        self.pos_to_node.range(range).map(|(_, &n)| n)
    }

    /// Add a node to the order map and assign it an arbitrary position.
    ///
    /// Return the position of the new node.
    pub(super) fn add_node(
        &mut self,
        id: N,
        graph: impl NodeIndexable<NodeId = N>,
    ) -> TopologicalPosition {
        // The position and node index
        let new_pos = self
            .pos_to_node
            .iter()
            .next_back()
            .map(|(TopologicalPosition(idx), _)| TopologicalPosition(idx + 1))
            .unwrap_or_default();
        let idx = graph.to_index(id);

        // Make sure the order_inv is large enough.
        if idx >= self.node_to_pos.len() {
            self.node_to_pos
                .resize(graph.node_bound(), TopologicalPosition::default());
        }

        // Insert both map directions.
        self.pos_to_node.insert(new_pos, id);
        self.node_to_pos[idx] = new_pos;

        new_pos
    }

    /// Remove a node from the order map.
    ///
    /// Panics if the node index is out of bounds.
    pub(super) fn remove_node(&mut self, id: N, graph: impl NodeIndexable<NodeId = N>) {
        let idx = graph.to_index(id);
        assert!(idx < self.node_to_pos.len());

        let pos = self.node_to_pos[idx];
        self.node_to_pos[idx] = TopologicalPosition::default();
        self.pos_to_node.remove(&pos);
    }

    /// Set the position of a node.
    ///
    /// Panics if the node index is out of bounds.
    pub(super) fn set_position(
        &mut self,
        id: N,
        pos: TopologicalPosition,
        graph: impl NodeIndexable<NodeId = N>,
    ) {
        let idx = graph.to_index(id);
        assert!(idx < self.node_to_pos.len());

        self.pos_to_node.insert(pos, id);
        self.node_to_pos[idx] = pos;
    }
}

impl<G: Visitable> super::Acyclic<G> {
    /// Get the position of a node in the topological sort.
    ///
    /// Panics if the node index is out of bounds.
    pub fn get_position<'a>(&'a self, id: G::NodeId) -> TopologicalPosition
    where
        &'a G: NodeIndexable + GraphBase<NodeId = G::NodeId>,
    {
        self.order_map.get_position(id, &self.graph)
    }

    /// Get the node at a given position in the topological sort, if it exists.
    pub fn at_position(&self, pos: TopologicalPosition) -> Option<G::NodeId> {
        self.order_map.at_position(pos)
    }
}