shadow_tsc/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// https://github.com/rust-lang/rfcs/blob/master/text/2585-unsafe-block-in-unsafe-fn.md
#![deny(unsafe_op_in_unsafe_fn)]

// Force cargo to link against crates that aren't (yet) referenced from Rust
// code (but are referenced from this crate's C code).
// https://github.com/rust-lang/cargo/issues/9391
extern crate logger;

/// cbindgen:ignore
pub mod c_internal {
    #![allow(non_upper_case_globals)]
    #![allow(non_camel_case_types)]
    #![allow(non_snake_case)]
    // https://github.com/rust-lang/rust/issues/66220
    #![allow(improper_ctypes)]
    include!(concat!(env!("OUT_DIR"), "/c_internal.rs"));
}

/// Emulates an x86-64 processor's timestamp counter, as read by rdtsc and
/// rdtscp.
#[repr(C)]
#[allow(non_snake_case)]
pub struct Tsc {
    // TODO: rename and make non-pub when we drop C API
    pub cyclesPerSecond: u64,
}

impl Tsc {
    /// Returns the host system's native TSC rate, or None if it couldn't be found.
    ///
    /// WARNING: this is known to fail completely on some supported CPUs
    /// (particularly AMD), and can return the wrong value for others. i.e. this
    /// needs more work if we need to dependably get the host's TSC rate.
    /// e.g. see <https://github.com/shadow/shadow/issues/1519>.
    pub fn native_cycles_per_second() -> Option<u64> {
        let res = unsafe { c_internal::TscC_nativeCyclesPerSecond() };
        if res == 0 {
            None
        } else {
            Some(res)
        }
    }

    pub fn new(cycles_per_second: u64) -> Self {
        Self {
            cyclesPerSecond: cycles_per_second,
        }
    }

    fn set_rdtsc_cycles(&self, rax: &mut u64, rdx: &mut u64, nanos: u64) {
        // The multiply is guaranteed not to overflow since both operands are 64 bit.
        let cycles = u128::from(self.cyclesPerSecond) * u128::from(nanos) / 1_000_000_000;
        // *possible* that we'll wrap around here, but only after a very long
        // simulated time and/or a ridiculously fast clock. Wrapping is also
        // presumably what would happen on real hardware.
        let cycles = cycles as u64;
        *rdx = (cycles >> 32) & 0xff_ff_ff_ff;
        *rax = cycles & 0xff_ff_ff_ff;
    }

    const RDTSC: [u8; 2] = [0x0f, 0x31];
    const RDTSCP: [u8; 3] = [0x0f, 0x01, 0xf9];

    /// Updates registers to reflect the result of executing an rdtsc
    /// instruction at time `nanos`.
    pub fn emulate_rdtsc(&self, rax: &mut u64, rdx: &mut u64, rip: &mut u64, nanos: u64) {
        self.set_rdtsc_cycles(rax, rdx, nanos);
        *rip += Self::RDTSC.len() as u64;
    }

    /// Updates registers to reflect the result of executing an rdtscp
    /// instruction at time `nanos`.
    pub fn emulate_rdtscp(
        &self,
        rax: &mut u64,
        rdx: &mut u64,
        rcx: &mut u64,
        rip: &mut u64,
        nanos: u64,
    ) {
        self.set_rdtsc_cycles(rax, rdx, nanos);
        *rip += Self::RDTSCP.len() as u64;

        // rcx is set to IA32_TSC_AUX. According to the Intel developer manual
        // 17.17.2 "IA32_TSC_AUX Register and RDTSCP Support", "IA32_TSC_AUX
        // provides a 32-bit field that is initialized by privileged software with a
        // signature value (for example, a logical processor ID)." ... "User mode
        // software can use RDTSCP to detect if CPU migration has occurred between
        // successive reads of the TSC. It can also be used to adjust for per-CPU
        // differences in TSC values in a NUMA system."
        //
        // For now we just hard-code an arbitrary constant, which should be fine for
        // the stated purpose.
        // `hex(int(random.random()*2**32))`
        *rcx = 0x806eb479;
    }

    /// SAFETY: `ip` must be a dereferenceable pointer, pointing to the beginning
    /// of a valid x86_64 instruction, and `insn` must be a valid x86_64 instruction.
    unsafe fn ip_matches(ip: *const u8, insn: &[u8]) -> bool {
        // SAFETY:
        // * Caller has guaranteed that `ip` points to some valid instruction.
        // * Caller has guaranteed that `insn` is a valid instruction.
        // * No instruction can be a prefix of another, so `insn` can't be a prefix
        //   of some *other* instruction at `ip`.
        // * [`std::Iterator::all`] is short-circuiting.
        //
        // e.g. consider the case where `ip` points to a 1-byte `ret`
        // instruction, and the next byte of memory isn't accessible. That
        // single byte *cannot* match the first byte of `insn`, so we'll never
        // dereference `ip.offset(1)`, which would be unsound.
        insn.iter()
            .enumerate()
            .all(|(offset, byte)| unsafe { *ip.add(offset) == *byte })
    }

    /// Whether `ip` points to an rdtsc instruction.
    ///
    /// # Safety
    ///
    /// `ip` must be a dereferenceable pointer, pointing to the
    /// beginning of a valid x86_64 instruction.
    pub unsafe fn ip_is_rdtsc(ip: *const u8) -> bool {
        unsafe { Self::ip_matches(ip, &Self::RDTSC) }
    }

    /// Whether `ip` points to an rdtscp instruction.
    ///
    /// # Safety
    ///
    /// `ip` must be a dereferenceable pointer, pointing to the
    /// beginning of a valid x86_64 instruction.
    pub unsafe fn ip_is_rdtscp(ip: *const u8) -> bool {
        unsafe { Self::ip_matches(ip, &Self::RDTSCP) }
    }
}

mod export {
    use super::*;

    /// Returns the host system's native TSC rate, or 0 if it couldn't be found.
    ///
    /// WARNING: this is known to fail completely on some supported CPUs
    /// (particularly AMD), and can return the wrong value for others. i.e. this
    /// needs more work if we need to dependably get the host's TSC rate.
    /// e.g. see https://github.com/shadow/shadow/issues/1519.
    #[no_mangle]
    pub extern "C-unwind" fn Tsc_nativeCyclesPerSecond() -> u64 {
        Tsc::native_cycles_per_second().unwrap_or(0)
    }

    /// Instantiate a TSC with the given clock rate.
    #[no_mangle]
    pub extern "C-unwind" fn Tsc_create(cycles_per_second: u64) -> Tsc {
        Tsc::new(cycles_per_second)
    }

    /// Updates `regs` to reflect the result of executing an rdtsc instruction at
    /// time `nanos`.
    #[no_mangle]
    pub extern "C-unwind" fn Tsc_emulateRdtsc(
        tsc: *const Tsc,
        rax: *mut u64,
        rdx: *mut u64,
        rip: *mut u64,
        nanos: u64,
    ) {
        let tsc = unsafe { tsc.as_ref().unwrap() };
        let rax = unsafe { rax.as_mut().unwrap() };
        let rdx = unsafe { rdx.as_mut().unwrap() };
        let rip = unsafe { rip.as_mut().unwrap() };
        tsc.emulate_rdtsc(rax, rdx, rip, nanos)
    }

    /// Updates `regs` to reflect the result of executing an rdtscp instruction at
    /// time `nanos`.
    #[no_mangle]
    pub extern "C-unwind" fn Tsc_emulateRdtscp(
        tsc: *const Tsc,
        rax: *mut u64,
        rdx: *mut u64,
        rcx: *mut u64,
        rip: *mut u64,
        nanos: u64,
    ) {
        let tsc = unsafe { tsc.as_ref().unwrap() };
        let rax = unsafe { rax.as_mut().unwrap() };
        let rdx = unsafe { rdx.as_mut().unwrap() };
        let rcx = unsafe { rcx.as_mut().unwrap() };
        let rip = unsafe { rip.as_mut().unwrap() };
        tsc.emulate_rdtscp(rax, rdx, rcx, rip, nanos)
    }

    /// Whether `buf` begins with an rdtsc instruction.
    #[no_mangle]
    pub extern "C-unwind" fn isRdtsc(ip: *const u8) -> bool {
        unsafe { Tsc::ip_is_rdtsc(ip) }
    }

    /// Whether `buf` begins with an rdtscp instruction.
    #[no_mangle]
    pub extern "C-unwind" fn isRdtscp(ip: *const u8) -> bool {
        unsafe { Tsc::ip_is_rdtscp(ip) }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    fn get_emulated_cycles(clock: u64, nanos: u64) -> u64 {
        let tsc = Tsc::new(clock);

        let mut rax = 0;
        let mut rdx = 0;
        let mut rcx = 0;
        let mut rip = 0;

        tsc.emulate_rdtsc(&mut rax, &mut rdx, &mut rip, nanos);
        assert_eq!(rax >> 32, 0);
        assert_eq!(rdx >> 32, 0);
        let rdtsc_res = (rdx << 32) | rax;

        tsc.emulate_rdtscp(&mut rax, &mut rdx, &mut rcx, &mut rip, nanos);
        assert_eq!(rax >> 32, 0);
        assert_eq!(rdx >> 32, 0);
        let rdtscp_res = (rdx << 32) | rax;

        assert_eq!(rdtsc_res, rdtscp_res);
        rdtsc_res
    }

    #[test]
    fn ns_granularity_at_1_ghz() {
        assert_eq!(get_emulated_cycles(1_000_000_000, 1), 1);
    }

    #[test]
    fn scales_with_clock_rate() {
        let base_clock = 1_000_000_000;
        let base_nanos = 1;
        assert_eq!(
            get_emulated_cycles(1000 * base_clock, base_nanos),
            1000 * get_emulated_cycles(base_clock, base_nanos)
        );
    }

    #[test]
    fn scales_with_time() {
        let base_clock = 1_000_000_000;
        let base_nanos = 1;
        assert_eq!(
            get_emulated_cycles(base_clock, 1000 * base_nanos),
            1000 * get_emulated_cycles(base_clock, base_nanos)
        );
    }

    #[test]
    fn large_cycle_count() {
        let one_year_in_seconds: u64 = 365 * 24 * 60 * 60;
        let ten_b_cycles_per_second: u64 = 10_000_000_000;
        let expected_cycles = one_year_in_seconds
            .checked_mul(ten_b_cycles_per_second)
            .unwrap();
        let actual_cycles =
            get_emulated_cycles(ten_b_cycles_per_second, one_year_in_seconds * 1_000_000_000);
        assert_eq!(actual_cycles, expected_cycles);
    }
}