1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
use core::{marker::PhantomData, pin::Pin};
use vasi::VirtualAddressSpaceIndependent;
use crate::sync;
#[cfg_attr(not(loom), derive(VirtualAddressSpaceIndependent))]
#[repr(transparent)]
struct AtomicFutexWord(sync::atomic::AtomicU32);
impl AtomicFutexWord {
// TODO: merge with `new` if and when loom's `AtomicU32` supports a const `new`.
#[cfg(not(loom))]
pub const fn const_new(val: FutexWord) -> Self {
Self(crate::sync::atomic::AtomicU32::new(val.to_u32()))
}
pub fn new(val: FutexWord) -> Self {
Self(crate::sync::atomic::AtomicU32::new(val.to_u32()))
}
pub fn inc_sleepers_and_fetch(&self, ord: sync::atomic::Ordering) -> FutexWord {
// The number of sleepers is stored in the low bits of the futex word,
// so we can increment the whole word.
let prev = FutexWord::from(self.0.fetch_add(1, ord));
// We'll panic here if we've overflowed she "sleepers" half of the word,
// leaving the lock in a bad state. Since UNLOCKED is 0, this will never
// cause a spurious unlock, but still-live threads using the lock
// will likely panic or deadlock.
FutexWord {
lock_state: prev.lock_state,
num_sleepers: prev.num_sleepers.checked_add(1).unwrap(),
}
}
pub fn dec_sleepers_and_fetch(&self, ord: sync::atomic::Ordering) -> FutexWord {
// The number of sleepers is stored in the low bits of the futex word,
// so we can decrement the whole word.
// Ideally we'd just use an atomic op on the "sleepers" part of the
// larger word, but that sort of aliasing breaks loom's analysis.
let prev = FutexWord::from(self.0.fetch_sub(1, ord));
// We'll panic here if we've underflowed the "sleepers" half of the word,
// leaving the lock in a bad state. This shouldn't be possible assuming
// SelfContainedMutex itself isn't buggy.
FutexWord {
lock_state: prev.lock_state,
num_sleepers: prev.num_sleepers.checked_sub(1).unwrap(),
}
}
pub fn unlock_and_fetch(&self, ord: sync::atomic::Ordering) -> FutexWord {
// We avoid having to synchronize the number of sleepers by using fetch_sub
// instead of a compare and swap.
debug_assert_eq!(UNLOCKED, 0);
let prev = FutexWord::from(self.0.fetch_sub(
u32::from(FutexWord {
lock_state: LOCKED,
num_sleepers: 0,
}),
ord,
));
assert_eq!(prev.lock_state, LOCKED);
FutexWord {
lock_state: UNLOCKED,
num_sleepers: prev.num_sleepers,
}
}
pub fn disconnect(&self, ord: sync::atomic::Ordering) {
// We avoid having to synchronize the number of sleepers by using fetch_add
// instead of a compare and swap.
//
// We'll panic here if we've somehow underflowed the word. This
// shouldn't be possible assuming SelfContainedMutex itself isn't buggy.
let to_add = LOCKED_DISCONNECTED.checked_sub(LOCKED).unwrap();
let prev = FutexWord::from(self.0.fetch_add(
u32::from(FutexWord {
lock_state: to_add,
num_sleepers: 0,
}),
ord,
));
assert_eq!(prev.lock_state, LOCKED);
}
pub fn load(&self, ord: sync::atomic::Ordering) -> FutexWord {
self.0.load(ord).into()
}
pub fn compare_exchange(
&self,
current: FutexWord,
new: FutexWord,
success: sync::atomic::Ordering,
failure: sync::atomic::Ordering,
) -> Result<FutexWord, FutexWord> {
let raw_res = self
.0
.compare_exchange(current.into(), new.into(), success, failure);
raw_res.map(FutexWord::from).map_err(FutexWord::from)
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct FutexWord {
lock_state: u16,
num_sleepers: u16,
}
impl FutexWord {
const fn to_u32(self) -> u32 {
((self.lock_state as u32) << 16) | (self.num_sleepers as u32)
}
}
impl From<u32> for FutexWord {
fn from(val: u32) -> Self {
Self {
lock_state: (val >> 16).try_into().unwrap(),
num_sleepers: (val & 0xff_ff).try_into().unwrap(),
}
}
}
impl From<FutexWord> for u32 {
fn from(val: FutexWord) -> Self {
val.to_u32()
}
}
/// Simple mutex that is suitable for use in shared memory:
///
/// * It has a fixed layout (repr(C))
/// * It's self-contained; e.g. isn't boxed and doesn't refer
/// to global lock-state in this process's address space.
/// * Works across processes (e.g. doesn't use FUTEX_PRIVATE_FLAG)
///
/// Performance is optimized primarily for low-contention scenarios.
#[cfg_attr(not(loom), derive(VirtualAddressSpaceIndependent))]
#[repr(C)]
pub struct SelfContainedMutex<T> {
futex: AtomicFutexWord,
val: sync::UnsafeCell<T>,
}
unsafe impl<T> Send for SelfContainedMutex<T> where T: Send {}
unsafe impl<T> Sync for SelfContainedMutex<T> where T: Send {}
const UNLOCKED: u16 = 0;
const LOCKED: u16 = 1;
const LOCKED_DISCONNECTED: u16 = 2;
impl<T> SelfContainedMutex<T> {
// TODO: merge with `new` when `AtomicFutexWord` supports a const `new`.
#[cfg(not(loom))]
pub const fn const_new(val: T) -> Self {
Self {
futex: AtomicFutexWord::const_new(FutexWord {
lock_state: UNLOCKED,
num_sleepers: 0,
}),
val: sync::UnsafeCell::new(val),
}
}
pub fn new(val: T) -> Self {
Self {
futex: AtomicFutexWord::new(FutexWord {
lock_state: UNLOCKED,
num_sleepers: 0,
}),
val: sync::UnsafeCell::new(val),
}
}
pub fn lock(&self) -> SelfContainedMutexGuard<T> {
// On first attempt, optimistically assume the lock is uncontended.
let mut current = FutexWord {
lock_state: UNLOCKED,
num_sleepers: 0,
};
loop {
if current.lock_state == UNLOCKED {
// Try to take the lock.
let current_res = self.futex.compare_exchange(
current,
FutexWord {
lock_state: LOCKED,
num_sleepers: current.num_sleepers,
},
sync::Ordering::Acquire,
sync::Ordering::Relaxed,
);
current = match current_res {
Ok(_) => {
// We successfully took the lock.
break;
}
// We weren't able to take the lock.
Err(i) => i,
};
}
// If the lock is available, try again now that we've sync'd the
// rest of the futex word (num_sleepers).
if current.lock_state == UNLOCKED {
continue;
}
// Try to sleep on the futex.
// Since incrementing is a read-modify-write operation, this does
// not break the release sequence since the last unlock.
current = self.futex.inc_sleepers_and_fetch(sync::Ordering::Relaxed);
loop {
// We may now see an UNLOCKED state from having done the increment
// above, or the load below.
if current.lock_state == UNLOCKED {
break;
}
match sync::futex_wait(&self.futex.0, current.into()) {
Ok(_) | Err(rustix::io::Errno::INTR) => break,
Err(rustix::io::Errno::AGAIN) => {
// We may have gotten this because another thread is
// also trying to sleep on the futex, and just
// incremented the sleeper count. If we naively
// decremented the sleeper count and ran the whole lock
// loop again, both threads could theoretically end up
// in a live-lock where neither ever gets to sleep on
// the futex.
//
// To avoid that, we update our current view of the
// atomic and consider trying again before removing
// ourselves from the sleeper count.
current = self.futex.load(sync::Ordering::Relaxed)
}
Err(e) => panic!("Unexpected futex error {:?}", e),
};
}
// Since decrementing is a read-modify-write operation, this does
// not break the release sequence since the last unlock.
current = self.futex.dec_sleepers_and_fetch(sync::Ordering::Relaxed);
}
SelfContainedMutexGuard {
mutex: Some(self),
ptr: Some(self.val.get_mut()),
_phantom: PhantomData,
}
}
pub fn lock_pinned<'a>(self: Pin<&'a Self>) -> Pin<SelfContainedMutexGuard<'a, T>> {
// SAFETY: `SelfContainedMutexGuard` doesn't provide DerefMut when `T`
// is `!Unpin`.
unsafe { Pin::new_unchecked(self.get_ref().lock()) }
}
fn unlock(&self) {
let current = self.futex.unlock_and_fetch(sync::Ordering::Release);
// Only perform a FUTEX_WAKE operation if other threads are actually
// sleeping on the lock.
if current.num_sleepers > 0 {
sync::futex_wake_one(&self.futex.0).unwrap();
}
}
}
pub struct SelfContainedMutexGuard<'a, T> {
mutex: Option<&'a SelfContainedMutex<T>>,
ptr: Option<sync::MutPtr<T>>,
// For purposes of deriving Send, Sync, etc.,
// this type should act as `&mut T`.
_phantom: PhantomData<&'a mut T>,
}
impl<'a, T> SelfContainedMutexGuard<'a, T> {
/// Drops the guard *without releasing the lock*.
///
/// This is useful when a lock must be held across some span of code within
/// a single thread, but it's difficult to pass the the guard between the
/// two parts of the code.
pub fn disconnect(mut self) {
self.mutex
.unwrap()
.futex
.disconnect(sync::Ordering::Relaxed);
self.mutex.take();
self.ptr.take();
}
/// Reconstitutes a guard that was previously disposed of via `disconnect`.
///
/// Panics if the lock is not disconnected (i.e. if `reconnect` was
/// already called).
///
/// Ok to reconnect from a different thread,though some external
/// synchronization may be needed to ensure the mutex is disconnected before
/// it tries to do so.
pub fn reconnect(mutex: &'a SelfContainedMutex<T>) -> Self {
let mut current = FutexWord {
lock_state: LOCKED_DISCONNECTED,
num_sleepers: 0,
};
loop {
assert_eq!(current.lock_state, LOCKED_DISCONNECTED);
let current_res = mutex.futex.compare_exchange(
current,
FutexWord {
lock_state: LOCKED,
num_sleepers: current.num_sleepers,
},
sync::Ordering::Relaxed,
sync::Ordering::Relaxed,
);
match current_res {
Ok(_) => {
// Done.
return Self {
mutex: Some(mutex),
ptr: Some(mutex.val.get_mut()),
_phantom: PhantomData,
};
}
Err(c) => {
// Try again with updated state
current = c;
}
}
}
}
/// Map the guard into a function of Pin<&mut T>.
///
/// When T implements `Unpin`, the caller can just use deref_mut instead.
///
// We can't provide an API that simply returns a Pin<&mut T>, since the Pin
// API doesn't provide a way to get to the inner guard without consuming the outer Pin.
pub fn map_pinned<F, O>(guard: Pin<Self>, f: F) -> O
where
F: FnOnce(Pin<&mut T>) -> O,
{
// SAFETY: We ensure that the &mut T made available from the unpinned guard isn't
// moved-from, by only giving `f` access to a Pin<&mut T>.
let guard: SelfContainedMutexGuard<T> = unsafe { Pin::into_inner_unchecked(guard) };
// SAFETY: The pointer is valid because it came from the mutex, which we know is live.
// The mutex ensures there can be no other live references to the internal data.
let ref_t = unsafe { guard.ptr.as_ref().unwrap().deref() };
// SAFETY: We know the original data is pinned, since the guard was Pin<Self>.
let pinned_t: Pin<&mut T> = unsafe { Pin::new_unchecked(ref_t) };
f(pinned_t)
}
}
impl<'a, T> Drop for SelfContainedMutexGuard<'a, T> {
fn drop(&mut self) {
if let Some(mutex) = self.mutex {
// We have to drop this pointer before unlocking when running
// under loom, which could otherwise detect multiple mutable
// references to the underlying cell. Under non loom, the drop
// has no effect.
#[allow(clippy::drop_non_drop)]
drop(self.ptr.take());
mutex.unlock();
}
}
}
impl<'a, T> core::ops::Deref for SelfContainedMutexGuard<'a, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// We can't call self.ptr.as_ref().unwrap().deref() here, since that
// would create a `&mut T`, and there could already exist a `&T`
// borrowed from `&self`.
// https://github.com/tokio-rs/loom/issues/293
self.ptr.as_ref().unwrap().with(|p| unsafe { &*p })
}
}
/// When T is Unpin, we can implement DerefMut. Otherwise it's unsafe
/// to do so, since SelfContainedMutex is an Archive type.
impl<'a, T> core::ops::DerefMut for SelfContainedMutexGuard<'a, T>
where
T: Unpin,
{
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { self.ptr.as_ref().unwrap().deref() }
}
}
// For unit tests see tests/scmutex-tests.rs