shadow_rs/host/syscall/handler/unistd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
use std::ffi::{CStr, CString};
use std::os::unix::ffi::OsStringExt;
use std::sync::Arc;
use atomic_refcell::AtomicRefCell;
use linux_api::errno::Errno;
use linux_api::fcntl::{DescriptorFlags, OFlag};
use linux_api::posix_types::{kernel_off_t, kernel_pid_t};
use log::*;
use shadow_shim_helper_rs::emulated_time::EmulatedTime;
use shadow_shim_helper_rs::rootedcell::refcell::RootedRefCell;
use shadow_shim_helper_rs::simulation_time::SimulationTime;
use shadow_shim_helper_rs::syscall_types::ForeignPtr;
use crate::core::work::task::TaskRef;
use crate::core::worker::Worker;
use crate::cshadow as c;
use crate::host::descriptor::descriptor_table::DescriptorHandle;
use crate::host::descriptor::pipe;
use crate::host::descriptor::shared_buf::SharedBuf;
use crate::host::descriptor::{CompatFile, Descriptor, File, FileMode, FileStatus, OpenFile};
use crate::host::process::{Process, ProcessId};
use crate::host::syscall::handler::{SyscallContext, SyscallHandler};
use crate::host::syscall::io::{read_cstring_vec, IoVec};
use crate::host::syscall::type_formatting::{SyscallBufferArg, SyscallStringArg};
use crate::host::syscall::types::{ForeignArrayPtr, SyscallError};
use crate::utility::callback_queue::CallbackQueue;
use crate::utility::u8_to_i8_slice;
impl SyscallHandler {
log_syscall!(
close,
/* rv */ std::ffi::c_int,
/* fd */ std::ffi::c_int,
);
pub fn close(ctx: &mut SyscallContext, fd: std::ffi::c_int) -> Result<(), SyscallError> {
trace!("Trying to close fd {}", fd);
let fd = fd.try_into().or(Err(linux_api::errno::Errno::EBADF))?;
// according to "man 2 close", in Linux any errors that may occur will happen after the fd is
// released, so we should always deregister the descriptor even if there's an error while
// closing
let desc = ctx
.objs
.thread
.descriptor_table_borrow_mut(ctx.objs.host)
.deregister_descriptor(fd)
.ok_or(linux_api::errno::Errno::EBADF)?;
// if there are still valid descriptors to the open file, close() will do nothing
// and return None
CallbackQueue::queue_and_run_with_legacy(|cb_queue| desc.close(ctx.objs.host, cb_queue))
.unwrap_or(Ok(()))
}
log_syscall!(
dup,
/* rv */ std::ffi::c_int,
/* oldfd */ std::ffi::c_int,
);
pub fn dup(
ctx: &mut SyscallContext,
fd: std::ffi::c_int,
) -> Result<DescriptorHandle, SyscallError> {
// get the descriptor, or return early if it doesn't exist
let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
let desc = Self::get_descriptor(&desc_table, fd)?;
// duplicate the descriptor
let new_desc = desc.dup(DescriptorFlags::empty());
Ok(desc_table
.register_descriptor(new_desc)
.or(Err(Errno::ENFILE))?)
}
log_syscall!(
dup2,
/* rv */ std::ffi::c_int,
/* oldfd */ std::ffi::c_int,
/* newfd */ std::ffi::c_int,
);
pub fn dup2(
ctx: &mut SyscallContext,
old_fd: std::ffi::c_int,
new_fd: std::ffi::c_int,
) -> Result<DescriptorHandle, SyscallError> {
let old_fd = DescriptorHandle::try_from(old_fd).or(Err(Errno::EBADF))?;
let new_fd = DescriptorHandle::try_from(new_fd).or(Err(Errno::EBADF))?;
// get the descriptor, or return early if it doesn't exist
let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
let desc = Self::get_descriptor(&desc_table, old_fd)?;
// from 'man 2 dup2': "If oldfd is a valid file descriptor, and newfd has the same
// value as oldfd, then dup2() does nothing, and returns newfd"
if old_fd == new_fd {
return Ok(new_fd);
}
// duplicate the descriptor
let new_desc = desc.dup(DescriptorFlags::empty());
let replaced_desc = desc_table.register_descriptor_with_fd(new_desc, new_fd);
// close the replaced descriptor
if let Some(replaced_desc) = replaced_desc {
// from 'man 2 dup2': "If newfd was open, any errors that would have been reported at
// close(2) time are lost"
CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
replaced_desc.close(ctx.objs.host, cb_queue)
});
}
// return the new fd
Ok(new_fd)
}
log_syscall!(
dup3,
/* rv */ std::ffi::c_int,
/* oldfd */ std::ffi::c_int,
/* newfd */ std::ffi::c_int,
/* flags */ linux_api::fcntl::OFlag,
);
pub fn dup3(
ctx: &mut SyscallContext,
old_fd: std::ffi::c_int,
new_fd: std::ffi::c_int,
flags: std::ffi::c_int,
) -> Result<DescriptorHandle, SyscallError> {
// get the descriptor, or return early if it doesn't exist
let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
let desc = Self::get_descriptor(&desc_table, old_fd)?;
// from 'man 2 dup3': "If oldfd equals newfd, then dup3() fails with the error EINVAL"
if old_fd == new_fd {
return Err(linux_api::errno::Errno::EINVAL.into());
}
let new_fd = new_fd.try_into().or(Err(linux_api::errno::Errno::EBADF))?;
let Some(flags) = OFlag::from_bits(flags) else {
debug!("Invalid flags: {flags}");
return Err(linux_api::errno::Errno::EINVAL.into());
};
let mut descriptor_flags = DescriptorFlags::empty();
// dup3 only supports the O_CLOEXEC flag
for flag in flags {
match flag {
OFlag::O_CLOEXEC => descriptor_flags.insert(DescriptorFlags::FD_CLOEXEC),
x if x == OFlag::empty() => {
// The "empty" flag is always present. Ignore.
}
_ => {
debug!("Invalid flags for dup3: {flags:?}");
return Err(linux_api::errno::Errno::EINVAL.into());
}
}
}
// duplicate the descriptor
let new_desc = desc.dup(descriptor_flags);
let replaced_desc = desc_table.register_descriptor_with_fd(new_desc, new_fd);
// close the replaced descriptor
if let Some(replaced_desc) = replaced_desc {
// from 'man 2 dup3': "If newfd was open, any errors that would have been reported at
// close(2) time are lost"
CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
replaced_desc.close(ctx.objs.host, cb_queue)
});
}
// return the new fd
Ok(new_fd)
}
log_syscall!(
read,
/* rv */ isize,
/* fd */ std::ffi::c_int,
/* buf */ *const std::ffi::c_void,
/* count */ usize,
);
pub fn read(
ctx: &mut SyscallContext,
fd: std::ffi::c_int,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
) -> Result<isize, SyscallError> {
// if we were previously blocked, get the active file from the last syscall handler
// invocation since it may no longer exist in the descriptor table
let file = ctx
.objs
.thread
.syscall_condition()
// if this was for a C descriptor, then there won't be an active file object
.and_then(|x| x.active_file().cloned());
let file = match file {
// we were previously blocked, so re-use the file from the previous syscall invocation
Some(x) => x,
// get the file from the descriptor table, or return early if it doesn't exist
None => {
let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
match Self::get_descriptor(&desc_table, fd)?.file() {
CompatFile::New(file) => file.clone(),
// if it's a legacy file, use the C syscall handler instead
CompatFile::Legacy(_) => {
drop(desc_table);
return Self::legacy_syscall(c::syscallhandler_read, ctx);
}
}
}
};
let mut result = Self::read_helper(ctx, file.inner_file(), buf_ptr, buf_size, None);
// if the syscall will block, keep the file open until the syscall restarts
if let Some(err) = result.as_mut().err() {
if let Some(cond) = err.blocked_condition() {
cond.set_active_file(file);
}
}
let bytes_read = result?;
Ok(bytes_read)
}
log_syscall!(
pread64,
/* rv */ isize,
/* fd */ std::ffi::c_int,
/* buf */ *const std::ffi::c_void,
/* count */ usize,
/* offset */ kernel_off_t,
);
pub fn pread64(
ctx: &mut SyscallContext,
fd: std::ffi::c_int,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
offset: kernel_off_t,
) -> Result<isize, SyscallError> {
// if we were previously blocked, get the active file from the last syscall handler
// invocation since it may no longer exist in the descriptor table
let file = ctx
.objs
.thread
.syscall_condition()
// if this was for a C descriptor, then there won't be an active file object
.and_then(|x| x.active_file().cloned());
let file = match file {
// we were previously blocked, so re-use the file from the previous syscall invocation
Some(x) => x,
// get the file from the descriptor table, or return early if it doesn't exist
None => {
let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
match Self::get_descriptor(&desc_table, fd)?.file() {
CompatFile::New(file) => file.clone(),
// if it's a legacy file, use the C syscall handler instead
CompatFile::Legacy(_) => {
drop(desc_table);
return Self::legacy_syscall(c::syscallhandler_pread64, ctx);
}
}
}
};
let mut result = Self::read_helper(ctx, file.inner_file(), buf_ptr, buf_size, Some(offset));
// if the syscall will block, keep the file open until the syscall restarts
if let Some(err) = result.as_mut().err() {
if let Some(cond) = err.blocked_condition() {
cond.set_active_file(file);
}
}
let bytes_read = result?;
Ok(bytes_read)
}
fn read_helper(
ctx: &mut SyscallContext,
file: &File,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
offset: Option<kernel_off_t>,
) -> Result<isize, SyscallError> {
let iov = IoVec {
base: buf_ptr,
len: buf_size,
};
Self::readv_helper(ctx, file, &[iov], offset, 0)
}
log_syscall!(
write,
/* rv */ isize,
/* fd */ std::ffi::c_int,
/* buf */ SyscallBufferArg</* count */ 2>,
/* count */ usize,
);
pub fn write(
ctx: &mut SyscallContext,
fd: std::ffi::c_int,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
) -> Result<isize, SyscallError> {
// if we were previously blocked, get the active file from the last syscall handler
// invocation since it may no longer exist in the descriptor table
let file = ctx
.objs
.thread
.syscall_condition()
// if this was for a C descriptor, then there won't be an active file object
.and_then(|x| x.active_file().cloned());
let file = match file {
// we were previously blocked, so re-use the file from the previous syscall invocation
Some(x) => x,
// get the file from the descriptor table, or return early if it doesn't exist
None => {
let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
match Self::get_descriptor(&desc_table, fd)?.file() {
CompatFile::New(file) => file.clone(),
// if it's a legacy file, use the C syscall handler instead
CompatFile::Legacy(_) => {
drop(desc_table);
return Self::legacy_syscall(c::syscallhandler_write, ctx);
}
}
}
};
let mut result = Self::write_helper(ctx, file.inner_file(), buf_ptr, buf_size, None);
// if the syscall will block, keep the file open until the syscall restarts
if let Some(err) = result.as_mut().err() {
if let Some(cond) = err.blocked_condition() {
cond.set_active_file(file);
}
}
let bytes_written = result?;
Ok(bytes_written)
}
log_syscall!(
pwrite64,
/* rv */ isize,
/* fd */ std::ffi::c_int,
/* buf */ SyscallBufferArg</* count */ 2>,
/* count */ usize,
/* offset */ kernel_off_t,
);
pub fn pwrite64(
ctx: &mut SyscallContext,
fd: std::ffi::c_int,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
offset: kernel_off_t,
) -> Result<isize, SyscallError> {
// if we were previously blocked, get the active file from the last syscall handler
// invocation since it may no longer exist in the descriptor table
let file = ctx
.objs
.thread
.syscall_condition()
// if this was for a C descriptor, then there won't be an active file object
.and_then(|x| x.active_file().cloned());
let file = match file {
// we were previously blocked, so re-use the file from the previous syscall invocation
Some(x) => x,
// get the file from the descriptor table, or return early if it doesn't exist
None => {
let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
match Self::get_descriptor(&desc_table, fd)?.file() {
CompatFile::New(file) => file.clone(),
// if it's a legacy file, use the C syscall handler instead
CompatFile::Legacy(_) => {
drop(desc_table);
return Self::legacy_syscall(c::syscallhandler_pwrite64, ctx);
}
}
}
};
let mut result =
Self::write_helper(ctx, file.inner_file(), buf_ptr, buf_size, Some(offset));
// if the syscall will block, keep the file open until the syscall restarts
if let Some(err) = result.as_mut().err() {
if let Some(cond) = err.blocked_condition() {
cond.set_active_file(file);
}
}
let bytes_written = result?;
Ok(bytes_written)
}
fn write_helper(
ctx: &mut SyscallContext,
file: &File,
buf_ptr: ForeignPtr<u8>,
buf_size: usize,
offset: Option<kernel_off_t>,
) -> Result<isize, SyscallError> {
let iov = IoVec {
base: buf_ptr,
len: buf_size,
};
Self::writev_helper(ctx, file, &[iov], offset, 0)
}
log_syscall!(
pipe,
/* rv */ std::ffi::c_int,
/* pipefd */ [std::ffi::c_int; 2],
);
pub fn pipe(
ctx: &mut SyscallContext,
fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
) -> Result<(), SyscallError> {
Self::pipe_helper(ctx, fd_ptr, 0)
}
log_syscall!(
pipe2,
/* rv */ std::ffi::c_int,
/* pipefd */ [std::ffi::c_int; 2],
/* flags */ linux_api::fcntl::OFlag,
);
pub fn pipe2(
ctx: &mut SyscallContext,
fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
flags: std::ffi::c_int,
) -> Result<(), SyscallError> {
Self::pipe_helper(ctx, fd_ptr, flags)
}
fn pipe_helper(
ctx: &mut SyscallContext,
fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
flags: i32,
) -> Result<(), SyscallError> {
// make sure they didn't pass a NULL pointer
if fd_ptr.is_null() {
return Err(linux_api::errno::Errno::EFAULT.into());
}
let Some(flags) = OFlag::from_bits(flags) else {
debug!("Invalid flags: {flags}");
return Err(Errno::EINVAL.into());
};
let mut file_flags = FileStatus::empty();
let mut descriptor_flags = DescriptorFlags::empty();
for flag in flags.iter() {
match flag {
OFlag::O_NONBLOCK => file_flags.insert(FileStatus::NONBLOCK),
OFlag::O_DIRECT => file_flags.insert(FileStatus::DIRECT),
OFlag::O_CLOEXEC => descriptor_flags.insert(DescriptorFlags::FD_CLOEXEC),
x if x == OFlag::empty() => {
// The "empty" flag is always present. Ignore.
}
unhandled => {
// TODO: return an error and change this to `warn_once_then_debug`?
warn!("Ignoring pipe flag {unhandled:?}");
}
}
}
// reference-counted buffer for the pipe
let buffer = SharedBuf::new(c::CONFIG_PIPE_BUFFER_SIZE.try_into().unwrap());
let buffer = Arc::new(AtomicRefCell::new(buffer));
// reference-counted file object for read end of the pipe
let reader = pipe::Pipe::new(FileMode::READ, file_flags);
let reader = Arc::new(AtomicRefCell::new(reader));
// reference-counted file object for write end of the pipe
let writer = pipe::Pipe::new(FileMode::WRITE, file_flags);
let writer = Arc::new(AtomicRefCell::new(writer));
// set the file objects to listen for events on the buffer
CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
pipe::Pipe::connect_to_buffer(&reader, Arc::clone(&buffer), cb_queue);
pipe::Pipe::connect_to_buffer(&writer, Arc::clone(&buffer), cb_queue);
});
// file descriptors for the read and write file objects
let mut reader_desc = Descriptor::new(CompatFile::New(OpenFile::new(File::Pipe(reader))));
let mut writer_desc = Descriptor::new(CompatFile::New(OpenFile::new(File::Pipe(writer))));
// set the file descriptor flags
reader_desc.set_flags(descriptor_flags);
writer_desc.set_flags(descriptor_flags);
// register the file descriptors
let mut dt = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
// unwrap here since the error handling would be messy (need to deregister) and we shouldn't
// ever need to worry about this in practice
let read_fd = dt.register_descriptor(reader_desc).unwrap();
let write_fd = dt.register_descriptor(writer_desc).unwrap();
// try to write them to the caller
let fds = [i32::from(read_fd), i32::from(write_fd)];
let write_res = ctx.objs.process.memory_borrow_mut().write(fd_ptr, &fds);
// clean up in case of error
match write_res {
Ok(_) => Ok(()),
Err(e) => {
CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
// ignore any errors when closing
dt.deregister_descriptor(read_fd)
.unwrap()
.close(ctx.objs.host, cb_queue);
dt.deregister_descriptor(write_fd)
.unwrap()
.close(ctx.objs.host, cb_queue);
});
Err(e.into())
}
}
}
log_syscall!(getpid, /* rv */ linux_api::posix_types::kernel_pid_t);
pub fn getpid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
Ok(ctx.objs.process.id().into())
}
log_syscall!(getppid, /* rv */ linux_api::posix_types::kernel_pid_t);
pub fn getppid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
Ok(ctx.objs.process.parent_id().into())
}
log_syscall!(getpgrp, /* rv */ kernel_pid_t);
pub fn getpgrp(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
Ok(ctx.objs.process.group_id().into())
}
log_syscall!(
getpgid,
/* rv */ kernel_pid_t,
/* pid*/ kernel_pid_t,
);
pub fn getpgid(
ctx: &mut SyscallContext,
pid: kernel_pid_t,
) -> Result<kernel_pid_t, SyscallError> {
if pid == 0 || pid == kernel_pid_t::from(ctx.objs.process.id()) {
return Ok(ctx.objs.process.group_id().into());
}
let pid = ProcessId::try_from(pid).map_err(|_| Errno::EINVAL)?;
let Some(process) = ctx.objs.host.process_borrow(pid) else {
return Err(Errno::ESRCH.into());
};
let process = process.borrow(ctx.objs.host.root());
Ok(process.group_id().into())
}
log_syscall!(
setpgid,
/* rv */ std::ffi::c_int,
/* pid */ kernel_pid_t,
/* pgid */ kernel_pid_t,
);
pub fn setpgid(
ctx: &mut SyscallContext,
pid: kernel_pid_t,
pgid: kernel_pid_t,
) -> Result<(), SyscallError> {
let _processrc_borrow;
let _process_borrow;
let process: &Process;
if pid == 0 || pid == kernel_pid_t::from(ctx.objs.process.id()) {
_processrc_borrow = None;
_process_borrow = None;
process = ctx.objs.process;
} else {
let pid = ProcessId::try_from(pid).map_err(|_| Errno::EINVAL)?;
let Some(pbrc) = ctx.objs.host.process_borrow(pid) else {
return Err(Errno::ESRCH.into());
};
_processrc_borrow = Some(pbrc);
_process_borrow = Some(
_processrc_borrow
.as_ref()
.unwrap()
.borrow(ctx.objs.host.root()),
);
process = _process_borrow.as_ref().unwrap();
}
let pgid = if pgid == 0 {
None
} else {
Some(ProcessId::try_from(pgid).map_err(|_| Errno::EINVAL)?)
};
if process.id() != ctx.objs.process.id() && process.parent_id() != ctx.objs.process.id() {
// `setpgid(2)`: pid is not the calling process and not a child of
// the calling process.
return Err(Errno::ESRCH.into());
}
if let Some(pgid) = pgid {
if ctx.objs.host.process_session_id_of_group_id(pgid) != Some(process.session_id()) {
// An attempt was made to move a process into a process group in
// a different session
return Err(Errno::EPERM.into());
}
}
if process.session_id() != ctx.objs.process.session_id() {
// `setpgid(2)`: ... or to change the process group ID of one of
// the children of the calling process and the child was in a
// different session
return Err(Errno::EPERM.into());
}
if process.session_id() == process.id() {
// `setpgid(2)`: ... or to change the process group ID of a session leader
return Err(Errno::EPERM.into());
}
// TODO: Keep track of whether a process has performed an `execve`.
// `setpgid(2): EACCES: An attempt was made to change the process group
// ID of one of the children of the calling process and the child had
// already performed an execve(2).
if let Some(pgid) = pgid {
if ctx.objs.host.process_session_id_of_group_id(pgid) != Some(process.session_id()) {
// `setpgid(2)`: An attempt was made to move a process into a
// process group in a different session
return Err(Errno::EPERM.into());
}
process.set_group_id(pgid);
} else {
// `setpgid(2)`: If pgid is zero, then the PGID of the process
// specified by pid is made the same as its process ID.
process.set_group_id(process.id());
}
Ok(())
}
log_syscall!(
getsid,
/* rv */ kernel_pid_t,
/* pid */ kernel_pid_t,
);
pub fn getsid(
ctx: &mut SyscallContext,
pid: kernel_pid_t,
) -> Result<kernel_pid_t, SyscallError> {
if pid == 0 {
return Ok(ctx.objs.process.session_id().into());
}
let Ok(pid) = ProcessId::try_from(pid) else {
return Err(Errno::EINVAL.into());
};
let Some(processrc) = ctx.objs.host.process_borrow(pid) else {
return Err(Errno::ESRCH.into());
};
let process = processrc.borrow(ctx.objs.host.root());
// No need to check that process is in the same session:
//
// `getsid(2)`: A process with process ID pid exists, but it is not in
// the same session as the calling process, and the implementation
// considers this an error... **Linux does not return EPERM**.
Ok(process.session_id().into())
}
log_syscall!(setsid, /* rv */ kernel_pid_t);
pub fn setsid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
let pid = ctx.objs.process.id();
if ctx.objs.host.process_session_id_of_group_id(pid).is_some() {
// `setsid(2)`: The process group ID of any process equals the PID
// of the calling process. Thus, in particular, setsid() fails if
// the calling process is already a process group leader.
return Err(Errno::EPERM.into());
}
// `setsid(2)`: The calling process is the leader of the new session
// (i.e., its session ID is made the same as its process ID).
ctx.objs.process.set_session_id(pid);
// `setsid(2)`: The calling process also becomes the process group
// leader of a new process group in the session (i.e., its process group
// ID is made the same as its process ID).
ctx.objs.process.set_group_id(pid);
Ok(pid.into())
}
fn execve_common(
ctx: &mut SyscallContext,
base_dir: &CStr,
path: &CStr,
argv_ptr_ptr: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
envv_ptr_ptr: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
_flags: std::ffi::c_int,
) -> Result<(), SyscallError> {
if path.is_empty() {
// execve(2): The file pathname or a script or ELF interpreter does not exist.
return Err(Errno::ENOENT.into());
}
let path_bytes_with_nul = path.to_bytes_with_nul();
let _abs_path_storage: Option<CString>;
let abs_path: &CStr;
if path_bytes_with_nul[0] != b'/' {
let base_dir_bytes = base_dir.to_bytes();
// Maybe TODO: this could be done in place without allocating
// and with less copying (but more fiddly and error-prone).
let mut tmp = Vec::with_capacity(
base_dir_bytes.len() + path_bytes_with_nul.len() + /*separator*/1,
);
tmp.extend(base_dir_bytes);
tmp.push(b'/');
tmp.extend(path_bytes_with_nul);
_abs_path_storage = Some(CString::from_vec_with_nul(tmp).unwrap());
abs_path = _abs_path_storage.as_ref().unwrap();
} else {
_abs_path_storage = None;
abs_path = path;
}
// TODO: canonicalize? On one hand that would improve caching behavior
// in `verify_plugin_path`; OTOH it does some redundant work with
// `verify_plugin_path`. Ideal solution is probably to split up
// `verify_plugin_path` a bit.
// `execve(2)`: Most UNIX implementations impose some limit on the
// total size of the command-line argument (argv) and
// environment (envp) strings that may be passed to a new program.
// POSIX.1 allows an implementation to advertise this limit using
// the ARG_MAX constant
let argv;
let envv;
{
let mem = ctx.objs.process.memory_borrow();
argv = read_cstring_vec(&mem, argv_ptr_ptr)?;
envv = read_cstring_vec(&mem, envv_ptr_ptr)?;
}
let mthread = ctx
.objs
.process
.borrow_as_runnable()
.unwrap()
.spawn_mthread_for_exec(ctx.objs.host, abs_path, argv, envv)?;
// If we get this far, then we should be able to ultimately succeed.
// We need a mutable reference to the Process to update it, though, which we can't
// get from here since it's already borrowed immutably.
//
// So, we return a "blocking" result from this syscall handler, and
// schedule an event to update the `Process` and resume execution.
//
// It's possible that other events may affect the `Process` before this one runs.
// We try to handle this gracefully; e.g. if the `Process` has exited before this
// event runs, we kill and drop the exec'd `ManagedThread` and carry on.
//
// TODO: There may be other interactions that aren't handled correctly.
// e.g. if the exec'ing thread ends up handling a signal in the meantime.
// * We could add a new state "`Execing`" to `Process`, and force any
// such events to decide how to deal with it. e.g. signal delivery
// events could reschedule themselves to run after the exec has
// completed. This seems a bit heavy-weight, though.
// * We could add more interior mutability s.t. we don't need mutable
// references to the Thread and Process in order to do the necessary
// updates. This is a fair bit of extra interior mutability to add
// though, and has a side-effect of further complicating read-accesses
// to items that are read-mostly.
// * We could arrange for syscall handlers to get or be able to get
// mutable references to the Thread and Process, so that we can complete
// the updates synchronously here. This is currently blocked by the
// usage of `worker_getCurrentProcess` and `worker_getCurrentThread`,
// which will panic with incompatible borrow errors if those are
// borrowed mutably. There aren't many references left to those though,
// maybe we can eliminate them.
{
let pid = ctx.objs.process.id();
let tid = ctx.objs.thread.id();
// Tasks are currently required to be `Sync` and to implement `Fn`, not just `FnOnce`.
// Since `mthread` isn't `Sync`, we need to wrap it in a `RootedRefCell`.
// Since we need to consume it, we need to also wrap it in an
// `Option` and fail at runtime if this actually gets executed
// multiple times.
// TODO: Split TaskRef into another type that only requires `FnOnce` and `Send`.
let mthread = RootedRefCell::new(ctx.objs.host.root(), Some(mthread));
ctx.objs.host.schedule_task_with_delay(
TaskRef::new(move |host| {
// Take the `mthread` out of the captured wrapper.
// This task shouldn't run multiple times, so this should be
// infallible.
let mthread = mthread.borrow_mut(host.root()).take().unwrap();
// The exec'ing thread's ID is changed to match the pid, since it's
// the new thread-group-leader.
let new_tglid = {
let Some(processrc) = host.process_borrow(pid) else {
// Can happen if another event runs before this one
// and causes the Process to exit (e.g. exit_group
// called from anothe Thread).
log::debug!("Process {pid:?} disappeared before exec could complete");
mthread.kill_and_drop();
return;
};
Worker::set_active_process(&processrc);
let mut process = processrc.borrow_mut(host.root());
process.update_for_exec(host, tid, mthread);
Worker::clear_active_process();
process.thread_group_leader_id()
};
host.resume(pid, new_tglid);
}),
SimulationTime::ZERO,
);
}
Err(SyscallError::new_blocked_until(EmulatedTime::MAX, false))
}
log_syscall!(
execve,
/* rv */ i32,
/* pathname */ SyscallStringArg,
/* argv */ *const std::ffi::c_void,
/* envp */ *const std::ffi::c_void,
);
pub fn execve(
ctx: &mut SyscallContext,
pathname: ForeignPtr<std::ffi::c_char>,
argv: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
envp: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
) -> Result<i64, SyscallError> {
let mut path_buf = [0u8; linux_api::limits::PATH_MAX];
let path_buf_capacity = path_buf.len();
let path = ctx.objs.process.memory_borrow().copy_str_from_ptr(
&mut path_buf,
ForeignArrayPtr::new(pathname.cast::<u8>(), path_buf_capacity),
)?;
Self::execve_common(
ctx,
&ctx.objs.process.current_working_dir(),
path,
argv,
envp,
0,
)
.map(|_| 0)
}
log_syscall!(
execveat,
/* rv */ i32,
/* dirfd */ std::ffi::c_int,
/* pathname */ SyscallStringArg,
/* argv */ *const std::ffi::c_void,
/* envp */ *const std::ffi::c_void,
/* flags */ std::ffi::c_int,
);
pub fn execveat(
_ctx: &mut SyscallContext,
_dirfd: std::ffi::c_int,
_pathname: ForeignPtr<std::ffi::c_char>,
_argv: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
_envp: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
_flags: std::ffi::c_int,
) -> Result<i64, SyscallError> {
// TODO: Implement resolution of the path to the executable,
// and then call `execve_common` with that.
Err(Errno::ENOSYS.into())
}
log_syscall!(
exit_group,
/* rv */ std::ffi::c_int,
/* error_code */ std::ffi::c_int,
);
pub fn exit_group(
_ctx: &mut SyscallContext,
error_code: std::ffi::c_int,
) -> Result<(), SyscallError> {
log::trace!("Exit group with exit code {error_code}");
Err(SyscallError::Native)
}
log_syscall!(
set_tid_address,
/* rv */ linux_api::posix_types::kernel_pid_t,
/* tidptr */ *const std::ffi::c_int,
);
pub fn set_tid_address(
ctx: &mut SyscallContext,
tid_ptr: ForeignPtr<std::ffi::c_int>,
) -> Result<kernel_pid_t, SyscallError> {
ctx.objs
.thread
.set_tid_address(tid_ptr.cast::<libc::pid_t>());
Ok(ctx.objs.thread.id().into())
}
log_syscall!(
uname,
/* rv */ std::ffi::c_int,
/* name */ *const std::ffi::c_void,
);
pub fn uname(
ctx: &mut SyscallContext,
name_ptr: ForeignPtr<linux_api::utsname::new_utsname>,
) -> Result<(), SyscallError> {
// NOTE: On linux x86-64, `SYS_uname` corresponds with `__NR_uname` which calls
// `sys_newuname` and not `sys_uname`. The correct mapping is:
//
// - __NR_oldolduname -> sys_olduname
// - __NR_olduname -> sys_uname
// - __NR_uname -> sys_newuname
//
// Some online resources such as the chromium syscall table are incorrect.
let mut name: linux_api::utsname::new_utsname = shadow_pod::zeroed();
let nodename = u8_to_i8_slice(ctx.objs.host.info().name.as_bytes());
// Currently hardcoded with values reported in Debian 12
let sysname = u8_to_i8_slice(&b"Linux"[..]);
let release = u8_to_i8_slice(&b"6.1.0-25-amd64"[..]);
let version = u8_to_i8_slice(&b"#1 SMP PREEMPT_DYNAMIC Debian 6.1.106-3 (2024-08-26)"[..]);
let machine = u8_to_i8_slice(&b"x86_64"[..]);
name.sysname[..sysname.len()].copy_from_slice(sysname);
name.nodename[..nodename.len()].copy_from_slice(nodename);
name.release[..release.len()].copy_from_slice(release);
name.version[..version.len()].copy_from_slice(version);
name.machine[..machine.len()].copy_from_slice(machine);
ctx.objs
.process
.memory_borrow_mut()
.write(name_ptr, &name)?;
Ok(())
}
log_syscall!(
chdir,
/* rv */ std::ffi::c_int,
/* path */ SyscallStringArg,
);
pub fn chdir(
ctx: &mut SyscallContext,
path: ForeignPtr<std::ffi::c_char>,
) -> Result<(), SyscallError> {
// The native working directory must match the emulated one
// <https://github.com/shadow/shadow/issues/2960>. First execute the
// native chdir, propagating any failures.
let (process, thread) = ctx.objs.split_thread();
thread.native_chdir(&process, path)?;
// Update our internal copy of the cwd.
//
// We could try to work it out ourselves based on the previous cwd and
// the path we were passed, but this seems a bit tricky and error-prone.
//
// We could have the managed thread execute a native `getcwd`, but we'd
// also need to have it allocate and free memory to use with it, making
// this a bit complex and high overhead.
//
// Instead we use the proc file system. `/proc/<pid>/cwd` should be a
// symbolic link to the actual working dir we just set.
let procpath = format!("/proc/{}/cwd", thread.native_tid().as_raw_nonzero().get());
let newcwd = std::fs::read_link(&procpath)
.unwrap_or_else(|e| panic!("Couldn't find new cwd {procpath}: {e:?}"));
let mut newcwd = newcwd.into_os_string().into_vec();
newcwd.push(0);
let newcwd = CString::from_vec_with_nul(newcwd).unwrap();
process.process.set_current_working_dir(newcwd);
Ok(())
}
}