shadow_rs/host/syscall/handler/
unistd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
use std::ffi::{CStr, CString};
use std::os::unix::ffi::OsStringExt;
use std::sync::Arc;

use atomic_refcell::AtomicRefCell;
use linux_api::errno::Errno;
use linux_api::fcntl::{DescriptorFlags, OFlag};
use linux_api::posix_types::{kernel_off_t, kernel_pid_t};
use log::*;
use shadow_shim_helper_rs::emulated_time::EmulatedTime;
use shadow_shim_helper_rs::rootedcell::refcell::RootedRefCell;
use shadow_shim_helper_rs::simulation_time::SimulationTime;
use shadow_shim_helper_rs::syscall_types::ForeignPtr;

use crate::core::work::task::TaskRef;
use crate::core::worker::Worker;
use crate::cshadow as c;
use crate::host::descriptor::descriptor_table::DescriptorHandle;
use crate::host::descriptor::pipe;
use crate::host::descriptor::shared_buf::SharedBuf;
use crate::host::descriptor::{CompatFile, Descriptor, File, FileMode, FileStatus, OpenFile};
use crate::host::process::{Process, ProcessId};
use crate::host::syscall::handler::{SyscallContext, SyscallHandler};
use crate::host::syscall::io::{read_cstring_vec, IoVec};
use crate::host::syscall::type_formatting::{SyscallBufferArg, SyscallStringArg};
use crate::host::syscall::types::{ForeignArrayPtr, SyscallError};
use crate::utility::callback_queue::CallbackQueue;
use crate::utility::u8_to_i8_slice;

impl SyscallHandler {
    log_syscall!(
        close,
        /* rv */ std::ffi::c_int,
        /* fd */ std::ffi::c_int,
    );
    pub fn close(ctx: &mut SyscallContext, fd: std::ffi::c_int) -> Result<(), SyscallError> {
        trace!("Trying to close fd {}", fd);

        let fd = fd.try_into().or(Err(linux_api::errno::Errno::EBADF))?;

        // according to "man 2 close", in Linux any errors that may occur will happen after the fd is
        // released, so we should always deregister the descriptor even if there's an error while
        // closing
        let desc = ctx
            .objs
            .thread
            .descriptor_table_borrow_mut(ctx.objs.host)
            .deregister_descriptor(fd)
            .ok_or(linux_api::errno::Errno::EBADF)?;

        // if there are still valid descriptors to the open file, close() will do nothing
        // and return None
        CallbackQueue::queue_and_run_with_legacy(|cb_queue| desc.close(ctx.objs.host, cb_queue))
            .unwrap_or(Ok(()))
    }

    log_syscall!(
        dup,
        /* rv */ std::ffi::c_int,
        /* oldfd */ std::ffi::c_int,
    );
    pub fn dup(
        ctx: &mut SyscallContext,
        fd: std::ffi::c_int,
    ) -> Result<DescriptorHandle, SyscallError> {
        // get the descriptor, or return early if it doesn't exist
        let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
        let desc = Self::get_descriptor(&desc_table, fd)?;

        // duplicate the descriptor
        let new_desc = desc.dup(DescriptorFlags::empty());

        Ok(desc_table
            .register_descriptor(new_desc)
            .or(Err(Errno::ENFILE))?)
    }

    log_syscall!(
        dup2,
        /* rv */ std::ffi::c_int,
        /* oldfd */ std::ffi::c_int,
        /* newfd */ std::ffi::c_int,
    );
    pub fn dup2(
        ctx: &mut SyscallContext,
        old_fd: std::ffi::c_int,
        new_fd: std::ffi::c_int,
    ) -> Result<DescriptorHandle, SyscallError> {
        let old_fd = DescriptorHandle::try_from(old_fd).or(Err(Errno::EBADF))?;
        let new_fd = DescriptorHandle::try_from(new_fd).or(Err(Errno::EBADF))?;

        // get the descriptor, or return early if it doesn't exist
        let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
        let desc = Self::get_descriptor(&desc_table, old_fd)?;

        // from 'man 2 dup2': "If oldfd is a valid file descriptor, and newfd has the same
        // value as oldfd, then dup2() does nothing, and returns newfd"
        if old_fd == new_fd {
            return Ok(new_fd);
        }

        // duplicate the descriptor
        let new_desc = desc.dup(DescriptorFlags::empty());
        let replaced_desc = desc_table.register_descriptor_with_fd(new_desc, new_fd);

        // close the replaced descriptor
        if let Some(replaced_desc) = replaced_desc {
            // from 'man 2 dup2': "If newfd was open, any errors that would have been reported at
            // close(2) time are lost"
            CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
                replaced_desc.close(ctx.objs.host, cb_queue)
            });
        }

        // return the new fd
        Ok(new_fd)
    }

    log_syscall!(
        dup3,
        /* rv */ std::ffi::c_int,
        /* oldfd */ std::ffi::c_int,
        /* newfd */ std::ffi::c_int,
        /* flags */ linux_api::fcntl::OFlag,
    );
    pub fn dup3(
        ctx: &mut SyscallContext,
        old_fd: std::ffi::c_int,
        new_fd: std::ffi::c_int,
        flags: std::ffi::c_int,
    ) -> Result<DescriptorHandle, SyscallError> {
        // get the descriptor, or return early if it doesn't exist
        let mut desc_table = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
        let desc = Self::get_descriptor(&desc_table, old_fd)?;

        // from 'man 2 dup3': "If oldfd equals newfd, then dup3() fails with the error EINVAL"
        if old_fd == new_fd {
            return Err(linux_api::errno::Errno::EINVAL.into());
        }

        let new_fd = new_fd.try_into().or(Err(linux_api::errno::Errno::EBADF))?;

        let Some(flags) = OFlag::from_bits(flags) else {
            debug!("Invalid flags: {flags}");
            return Err(linux_api::errno::Errno::EINVAL.into());
        };

        let mut descriptor_flags = DescriptorFlags::empty();

        // dup3 only supports the O_CLOEXEC flag
        for flag in flags {
            match flag {
                OFlag::O_CLOEXEC => descriptor_flags.insert(DescriptorFlags::FD_CLOEXEC),
                x if x == OFlag::empty() => {
                    // The "empty" flag is always present. Ignore.
                }
                _ => {
                    debug!("Invalid flags for dup3: {flags:?}");
                    return Err(linux_api::errno::Errno::EINVAL.into());
                }
            }
        }

        // duplicate the descriptor
        let new_desc = desc.dup(descriptor_flags);
        let replaced_desc = desc_table.register_descriptor_with_fd(new_desc, new_fd);

        // close the replaced descriptor
        if let Some(replaced_desc) = replaced_desc {
            // from 'man 2 dup3': "If newfd was open, any errors that would have been reported at
            // close(2) time are lost"
            CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
                replaced_desc.close(ctx.objs.host, cb_queue)
            });
        }

        // return the new fd
        Ok(new_fd)
    }

    log_syscall!(
        read,
        /* rv */ isize,
        /* fd */ std::ffi::c_int,
        /* buf */ *const std::ffi::c_void,
        /* count */ usize,
    );
    pub fn read(
        ctx: &mut SyscallContext,
        fd: std::ffi::c_int,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
    ) -> Result<isize, SyscallError> {
        // if we were previously blocked, get the active file from the last syscall handler
        // invocation since it may no longer exist in the descriptor table
        let file = ctx
            .objs
            .thread
            .syscall_condition()
            // if this was for a C descriptor, then there won't be an active file object
            .and_then(|x| x.active_file().cloned());

        let file = match file {
            // we were previously blocked, so re-use the file from the previous syscall invocation
            Some(x) => x,
            // get the file from the descriptor table, or return early if it doesn't exist
            None => {
                let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
                match Self::get_descriptor(&desc_table, fd)?.file() {
                    CompatFile::New(file) => file.clone(),
                    // if it's a legacy file, use the C syscall handler instead
                    CompatFile::Legacy(_) => {
                        drop(desc_table);
                        return Self::legacy_syscall(c::syscallhandler_read, ctx);
                    }
                }
            }
        };

        let mut result = Self::read_helper(ctx, file.inner_file(), buf_ptr, buf_size, None);

        // if the syscall will block, keep the file open until the syscall restarts
        if let Some(err) = result.as_mut().err() {
            if let Some(cond) = err.blocked_condition() {
                cond.set_active_file(file);
            }
        }

        let bytes_read = result?;
        Ok(bytes_read)
    }

    log_syscall!(
        pread64,
        /* rv */ isize,
        /* fd */ std::ffi::c_int,
        /* buf */ *const std::ffi::c_void,
        /* count */ usize,
        /* offset */ kernel_off_t,
    );
    pub fn pread64(
        ctx: &mut SyscallContext,
        fd: std::ffi::c_int,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
        offset: kernel_off_t,
    ) -> Result<isize, SyscallError> {
        // if we were previously blocked, get the active file from the last syscall handler
        // invocation since it may no longer exist in the descriptor table
        let file = ctx
            .objs
            .thread
            .syscall_condition()
            // if this was for a C descriptor, then there won't be an active file object
            .and_then(|x| x.active_file().cloned());

        let file = match file {
            // we were previously blocked, so re-use the file from the previous syscall invocation
            Some(x) => x,
            // get the file from the descriptor table, or return early if it doesn't exist
            None => {
                let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
                match Self::get_descriptor(&desc_table, fd)?.file() {
                    CompatFile::New(file) => file.clone(),
                    // if it's a legacy file, use the C syscall handler instead
                    CompatFile::Legacy(_) => {
                        drop(desc_table);
                        return Self::legacy_syscall(c::syscallhandler_pread64, ctx);
                    }
                }
            }
        };

        let mut result = Self::read_helper(ctx, file.inner_file(), buf_ptr, buf_size, Some(offset));

        // if the syscall will block, keep the file open until the syscall restarts
        if let Some(err) = result.as_mut().err() {
            if let Some(cond) = err.blocked_condition() {
                cond.set_active_file(file);
            }
        }

        let bytes_read = result?;
        Ok(bytes_read)
    }

    fn read_helper(
        ctx: &mut SyscallContext,
        file: &File,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
        offset: Option<kernel_off_t>,
    ) -> Result<isize, SyscallError> {
        let iov = IoVec {
            base: buf_ptr,
            len: buf_size,
        };
        Self::readv_helper(ctx, file, &[iov], offset, 0)
    }

    log_syscall!(
        write,
        /* rv */ isize,
        /* fd */ std::ffi::c_int,
        /* buf */ SyscallBufferArg</* count */ 2>,
        /* count */ usize,
    );
    pub fn write(
        ctx: &mut SyscallContext,
        fd: std::ffi::c_int,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
    ) -> Result<isize, SyscallError> {
        // if we were previously blocked, get the active file from the last syscall handler
        // invocation since it may no longer exist in the descriptor table
        let file = ctx
            .objs
            .thread
            .syscall_condition()
            // if this was for a C descriptor, then there won't be an active file object
            .and_then(|x| x.active_file().cloned());

        let file = match file {
            // we were previously blocked, so re-use the file from the previous syscall invocation
            Some(x) => x,
            // get the file from the descriptor table, or return early if it doesn't exist
            None => {
                let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
                match Self::get_descriptor(&desc_table, fd)?.file() {
                    CompatFile::New(file) => file.clone(),
                    // if it's a legacy file, use the C syscall handler instead
                    CompatFile::Legacy(_) => {
                        drop(desc_table);
                        return Self::legacy_syscall(c::syscallhandler_write, ctx);
                    }
                }
            }
        };

        let mut result = Self::write_helper(ctx, file.inner_file(), buf_ptr, buf_size, None);

        // if the syscall will block, keep the file open until the syscall restarts
        if let Some(err) = result.as_mut().err() {
            if let Some(cond) = err.blocked_condition() {
                cond.set_active_file(file);
            }
        }

        let bytes_written = result?;
        Ok(bytes_written)
    }

    log_syscall!(
        pwrite64,
        /* rv */ isize,
        /* fd */ std::ffi::c_int,
        /* buf */ SyscallBufferArg</* count */ 2>,
        /* count */ usize,
        /* offset */ kernel_off_t,
    );
    pub fn pwrite64(
        ctx: &mut SyscallContext,
        fd: std::ffi::c_int,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
        offset: kernel_off_t,
    ) -> Result<isize, SyscallError> {
        // if we were previously blocked, get the active file from the last syscall handler
        // invocation since it may no longer exist in the descriptor table
        let file = ctx
            .objs
            .thread
            .syscall_condition()
            // if this was for a C descriptor, then there won't be an active file object
            .and_then(|x| x.active_file().cloned());

        let file = match file {
            // we were previously blocked, so re-use the file from the previous syscall invocation
            Some(x) => x,
            // get the file from the descriptor table, or return early if it doesn't exist
            None => {
                let desc_table = ctx.objs.thread.descriptor_table_borrow(ctx.objs.host);
                match Self::get_descriptor(&desc_table, fd)?.file() {
                    CompatFile::New(file) => file.clone(),
                    // if it's a legacy file, use the C syscall handler instead
                    CompatFile::Legacy(_) => {
                        drop(desc_table);
                        return Self::legacy_syscall(c::syscallhandler_pwrite64, ctx);
                    }
                }
            }
        };

        let mut result =
            Self::write_helper(ctx, file.inner_file(), buf_ptr, buf_size, Some(offset));

        // if the syscall will block, keep the file open until the syscall restarts
        if let Some(err) = result.as_mut().err() {
            if let Some(cond) = err.blocked_condition() {
                cond.set_active_file(file);
            }
        }

        let bytes_written = result?;
        Ok(bytes_written)
    }

    fn write_helper(
        ctx: &mut SyscallContext,
        file: &File,
        buf_ptr: ForeignPtr<u8>,
        buf_size: usize,
        offset: Option<kernel_off_t>,
    ) -> Result<isize, SyscallError> {
        let iov = IoVec {
            base: buf_ptr,
            len: buf_size,
        };
        Self::writev_helper(ctx, file, &[iov], offset, 0)
    }

    log_syscall!(
        pipe,
        /* rv */ std::ffi::c_int,
        /* pipefd */ [std::ffi::c_int; 2],
    );
    pub fn pipe(
        ctx: &mut SyscallContext,
        fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
    ) -> Result<(), SyscallError> {
        Self::pipe_helper(ctx, fd_ptr, 0)
    }

    log_syscall!(
        pipe2,
        /* rv */ std::ffi::c_int,
        /* pipefd */ [std::ffi::c_int; 2],
        /* flags */ linux_api::fcntl::OFlag,
    );
    pub fn pipe2(
        ctx: &mut SyscallContext,
        fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
        flags: std::ffi::c_int,
    ) -> Result<(), SyscallError> {
        Self::pipe_helper(ctx, fd_ptr, flags)
    }

    fn pipe_helper(
        ctx: &mut SyscallContext,
        fd_ptr: ForeignPtr<[std::ffi::c_int; 2]>,
        flags: i32,
    ) -> Result<(), SyscallError> {
        // make sure they didn't pass a NULL pointer
        if fd_ptr.is_null() {
            return Err(linux_api::errno::Errno::EFAULT.into());
        }

        let Some(flags) = OFlag::from_bits(flags) else {
            debug!("Invalid flags: {flags}");
            return Err(Errno::EINVAL.into());
        };

        let mut file_flags = FileStatus::empty();
        let mut descriptor_flags = DescriptorFlags::empty();

        for flag in flags.iter() {
            match flag {
                OFlag::O_NONBLOCK => file_flags.insert(FileStatus::NONBLOCK),
                OFlag::O_DIRECT => file_flags.insert(FileStatus::DIRECT),
                OFlag::O_CLOEXEC => descriptor_flags.insert(DescriptorFlags::FD_CLOEXEC),
                x if x == OFlag::empty() => {
                    // The "empty" flag is always present. Ignore.
                }
                unhandled => {
                    // TODO: return an error and change this to `warn_once_then_debug`?
                    warn!("Ignoring pipe flag {unhandled:?}");
                }
            }
        }

        // reference-counted buffer for the pipe
        let buffer = SharedBuf::new(c::CONFIG_PIPE_BUFFER_SIZE.try_into().unwrap());
        let buffer = Arc::new(AtomicRefCell::new(buffer));

        // reference-counted file object for read end of the pipe
        let reader = pipe::Pipe::new(FileMode::READ, file_flags);
        let reader = Arc::new(AtomicRefCell::new(reader));

        // reference-counted file object for write end of the pipe
        let writer = pipe::Pipe::new(FileMode::WRITE, file_flags);
        let writer = Arc::new(AtomicRefCell::new(writer));

        // set the file objects to listen for events on the buffer
        CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
            pipe::Pipe::connect_to_buffer(&reader, Arc::clone(&buffer), cb_queue);
            pipe::Pipe::connect_to_buffer(&writer, Arc::clone(&buffer), cb_queue);
        });

        // file descriptors for the read and write file objects
        let mut reader_desc = Descriptor::new(CompatFile::New(OpenFile::new(File::Pipe(reader))));
        let mut writer_desc = Descriptor::new(CompatFile::New(OpenFile::new(File::Pipe(writer))));

        // set the file descriptor flags
        reader_desc.set_flags(descriptor_flags);
        writer_desc.set_flags(descriptor_flags);

        // register the file descriptors
        let mut dt = ctx.objs.thread.descriptor_table_borrow_mut(ctx.objs.host);
        // unwrap here since the error handling would be messy (need to deregister) and we shouldn't
        // ever need to worry about this in practice
        let read_fd = dt.register_descriptor(reader_desc).unwrap();
        let write_fd = dt.register_descriptor(writer_desc).unwrap();

        // try to write them to the caller
        let fds = [i32::from(read_fd), i32::from(write_fd)];
        let write_res = ctx.objs.process.memory_borrow_mut().write(fd_ptr, &fds);

        // clean up in case of error
        match write_res {
            Ok(_) => Ok(()),
            Err(e) => {
                CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
                    // ignore any errors when closing
                    dt.deregister_descriptor(read_fd)
                        .unwrap()
                        .close(ctx.objs.host, cb_queue);
                    dt.deregister_descriptor(write_fd)
                        .unwrap()
                        .close(ctx.objs.host, cb_queue);
                });
                Err(e.into())
            }
        }
    }

    log_syscall!(getpid, /* rv */ linux_api::posix_types::kernel_pid_t);
    pub fn getpid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
        Ok(ctx.objs.process.id().into())
    }

    log_syscall!(getppid, /* rv */ linux_api::posix_types::kernel_pid_t);
    pub fn getppid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
        Ok(ctx.objs.process.parent_id().into())
    }

    log_syscall!(getpgrp, /* rv */ kernel_pid_t);
    pub fn getpgrp(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
        Ok(ctx.objs.process.group_id().into())
    }

    log_syscall!(
        getpgid,
        /* rv */ kernel_pid_t,
        /* pid*/ kernel_pid_t,
    );
    pub fn getpgid(
        ctx: &mut SyscallContext,
        pid: kernel_pid_t,
    ) -> Result<kernel_pid_t, SyscallError> {
        if pid == 0 || pid == kernel_pid_t::from(ctx.objs.process.id()) {
            return Ok(ctx.objs.process.group_id().into());
        }
        let pid = ProcessId::try_from(pid).map_err(|_| Errno::EINVAL)?;
        let Some(process) = ctx.objs.host.process_borrow(pid) else {
            return Err(Errno::ESRCH.into());
        };
        let process = process.borrow(ctx.objs.host.root());
        Ok(process.group_id().into())
    }

    log_syscall!(
        setpgid,
        /* rv */ std::ffi::c_int,
        /* pid */ kernel_pid_t,
        /* pgid */ kernel_pid_t,
    );
    pub fn setpgid(
        ctx: &mut SyscallContext,
        pid: kernel_pid_t,
        pgid: kernel_pid_t,
    ) -> Result<(), SyscallError> {
        let _processrc_borrow;
        let _process_borrow;
        let process: &Process;
        if pid == 0 || pid == kernel_pid_t::from(ctx.objs.process.id()) {
            _processrc_borrow = None;
            _process_borrow = None;
            process = ctx.objs.process;
        } else {
            let pid = ProcessId::try_from(pid).map_err(|_| Errno::EINVAL)?;
            let Some(pbrc) = ctx.objs.host.process_borrow(pid) else {
                return Err(Errno::ESRCH.into());
            };
            _processrc_borrow = Some(pbrc);
            _process_borrow = Some(
                _processrc_borrow
                    .as_ref()
                    .unwrap()
                    .borrow(ctx.objs.host.root()),
            );
            process = _process_borrow.as_ref().unwrap();
        }
        let pgid = if pgid == 0 {
            None
        } else {
            Some(ProcessId::try_from(pgid).map_err(|_| Errno::EINVAL)?)
        };
        if process.id() != ctx.objs.process.id() && process.parent_id() != ctx.objs.process.id() {
            // `setpgid(2)`: pid is not the calling process and not a child  of
            // the calling process.
            return Err(Errno::ESRCH.into());
        }
        if let Some(pgid) = pgid {
            if ctx.objs.host.process_session_id_of_group_id(pgid) != Some(process.session_id()) {
                // An attempt was made to move a process into a process group in
                // a different session
                return Err(Errno::EPERM.into());
            }
        }
        if process.session_id() != ctx.objs.process.session_id() {
            // `setpgid(2)`: ... or to change the process  group  ID of one of
            // the children of the calling process and the child was in a
            // different session
            return Err(Errno::EPERM.into());
        }
        if process.session_id() == process.id() {
            // `setpgid(2)`: ... or to change the process group ID of a session leader
            return Err(Errno::EPERM.into());
        }
        // TODO: Keep track of whether a process has performed an `execve`.
        // `setpgid(2): EACCES: An attempt was made to change the process group
        // ID of one of the children of the calling process and the child had
        // already performed an execve(2).
        if let Some(pgid) = pgid {
            if ctx.objs.host.process_session_id_of_group_id(pgid) != Some(process.session_id()) {
                // `setpgid(2)`: An attempt was made to move a process into a
                // process group in a different session
                return Err(Errno::EPERM.into());
            }
            process.set_group_id(pgid);
        } else {
            // `setpgid(2)`: If pgid is zero, then the PGID of the process
            // specified by pid is made the same as its process ID.
            process.set_group_id(process.id());
        }
        Ok(())
    }

    log_syscall!(
        getsid,
        /* rv */ kernel_pid_t,
        /* pid */ kernel_pid_t,
    );
    pub fn getsid(
        ctx: &mut SyscallContext,
        pid: kernel_pid_t,
    ) -> Result<kernel_pid_t, SyscallError> {
        if pid == 0 {
            return Ok(ctx.objs.process.session_id().into());
        }
        let Ok(pid) = ProcessId::try_from(pid) else {
            return Err(Errno::EINVAL.into());
        };
        let Some(processrc) = ctx.objs.host.process_borrow(pid) else {
            return Err(Errno::ESRCH.into());
        };
        let process = processrc.borrow(ctx.objs.host.root());
        // No need to check that process is in the same session:
        //
        // `getsid(2)`: A process with process ID pid exists, but it is not in
        // the same session as the calling process, and the implementation
        // considers this an error... **Linux does not return EPERM**.

        Ok(process.session_id().into())
    }

    log_syscall!(setsid, /* rv */ kernel_pid_t);
    pub fn setsid(ctx: &mut SyscallContext) -> Result<kernel_pid_t, SyscallError> {
        let pid = ctx.objs.process.id();
        if ctx.objs.host.process_session_id_of_group_id(pid).is_some() {
            // `setsid(2)`: The process group ID of any process equals the PID
            // of the calling process.  Thus, in particular, setsid() fails if
            // the calling process is already a process group leader.
            return Err(Errno::EPERM.into());
        }

        // `setsid(2)`: The calling process is the leader of the new session
        // (i.e., its session ID is made the same as its process ID).
        ctx.objs.process.set_session_id(pid);

        // `setsid(2)`: The calling  process  also  becomes  the  process group
        // leader of a new process group in the session (i.e., its process group
        // ID is made the same as its process ID).
        ctx.objs.process.set_group_id(pid);

        Ok(pid.into())
    }

    fn execve_common(
        ctx: &mut SyscallContext,
        base_dir: &CStr,
        path: &CStr,
        argv_ptr_ptr: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
        envv_ptr_ptr: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
        _flags: std::ffi::c_int,
    ) -> Result<(), SyscallError> {
        if path.is_empty() {
            // execve(2): The file pathname or a script or ELF interpreter does not exist.
            return Err(Errno::ENOENT.into());
        }

        let path_bytes_with_nul = path.to_bytes_with_nul();

        let _abs_path_storage: Option<CString>;
        let abs_path: &CStr;
        if path_bytes_with_nul[0] != b'/' {
            let base_dir_bytes = base_dir.to_bytes();

            // Maybe TODO: this could be done in place without allocating
            // and with less copying (but more fiddly and error-prone).
            let mut tmp = Vec::with_capacity(
                base_dir_bytes.len() + path_bytes_with_nul.len() + /*separator*/1,
            );
            tmp.extend(base_dir_bytes);
            tmp.push(b'/');
            tmp.extend(path_bytes_with_nul);

            _abs_path_storage = Some(CString::from_vec_with_nul(tmp).unwrap());
            abs_path = _abs_path_storage.as_ref().unwrap();
        } else {
            _abs_path_storage = None;
            abs_path = path;
        }

        // TODO: canonicalize? On one hand that would improve caching behavior
        // in `verify_plugin_path`; OTOH it does some redundant work with
        // `verify_plugin_path`. Ideal solution is probably to split up
        // `verify_plugin_path` a bit.

        // `execve(2)`: Most UNIX implementations impose some limit on the
        // total size of the command-line  argument  (argv)  and
        // environment  (envp) strings that may be passed to a new program.
        // POSIX.1 allows an implementation to advertise this limit using
        // the ARG_MAX constant

        let argv;
        let envv;
        {
            let mem = ctx.objs.process.memory_borrow();
            argv = read_cstring_vec(&mem, argv_ptr_ptr)?;
            envv = read_cstring_vec(&mem, envv_ptr_ptr)?;
        }

        let mthread = ctx
            .objs
            .process
            .borrow_as_runnable()
            .unwrap()
            .spawn_mthread_for_exec(ctx.objs.host, abs_path, argv, envv)?;

        // If we get this far, then we should be able to ultimately succeed.
        // We need a mutable reference to the Process to update it, though, which we can't
        // get from here since it's already borrowed immutably.
        //
        // So, we return a "blocking" result from this syscall handler, and
        // schedule an event to update the `Process` and resume execution.
        //
        // It's possible that other events may affect the `Process` before this one runs.
        // We try to handle this gracefully; e.g. if the `Process` has exited before this
        // event runs, we kill and drop the exec'd `ManagedThread` and carry on.
        //
        // TODO: There may be other interactions that aren't handled correctly.
        // e.g. if the exec'ing thread ends up handling a signal in the meantime.
        // * We could add a new state "`Execing`" to `Process`, and force any
        // such events to decide how to deal with it. e.g. signal delivery
        // events could reschedule themselves to run after the exec has
        // completed. This seems a bit heavy-weight, though.
        // * We could add more interior mutability s.t. we don't need mutable
        // references to the Thread and Process in order to do the necessary
        // updates. This is a fair bit of extra interior mutability to add
        // though, and has a side-effect of further complicating read-accesses
        // to items that are read-mostly.
        // * We could arrange for syscall handlers to get or be able to get
        // mutable references to the Thread and Process, so that we can complete
        // the updates synchronously here. This is currently blocked by the
        // usage of `worker_getCurrentProcess` and `worker_getCurrentThread`,
        // which will panic with incompatible borrow errors if those are
        // borrowed mutably.  There aren't many references left to those though,
        // maybe we can eliminate them.
        {
            let pid = ctx.objs.process.id();
            let tid = ctx.objs.thread.id();

            // Tasks are currently required to be `Sync` and to implement `Fn`, not just `FnOnce`.
            // Since `mthread` isn't `Sync`, we need to wrap it in a `RootedRefCell`.
            // Since we need to consume it, we need to also wrap it in an
            // `Option` and fail at runtime if this actually gets executed
            // multiple times.
            // TODO: Split TaskRef into another type that only requires `FnOnce` and `Send`.
            let mthread = RootedRefCell::new(ctx.objs.host.root(), Some(mthread));
            ctx.objs.host.schedule_task_with_delay(
                TaskRef::new(move |host| {
                    // Take the `mthread` out of the captured wrapper.
                    // This task shouldn't run multiple times, so this should be
                    // infallible.
                    let mthread = mthread.borrow_mut(host.root()).take().unwrap();
                    // The exec'ing thread's ID is changed to match the pid, since it's
                    // the new thread-group-leader.
                    let new_tglid = {
                        let Some(processrc) = host.process_borrow(pid) else {
                            // Can happen if another event runs before this one
                            // and causes the Process to exit (e.g. exit_group
                            // called from anothe Thread).
                            log::debug!("Process {pid:?} disappeared before exec could complete");
                            mthread.kill_and_drop();
                            return;
                        };
                        Worker::set_active_process(&processrc);
                        let mut process = processrc.borrow_mut(host.root());
                        process.update_for_exec(host, tid, mthread);
                        Worker::clear_active_process();
                        process.thread_group_leader_id()
                    };
                    host.resume(pid, new_tglid);
                }),
                SimulationTime::ZERO,
            );
        }

        Err(SyscallError::new_blocked_until(EmulatedTime::MAX, false))
    }

    log_syscall!(
        execve,
        /* rv */ i32,
        /* pathname */ SyscallStringArg,
        /* argv */ *const std::ffi::c_void,
        /* envp */ *const std::ffi::c_void,
    );
    pub fn execve(
        ctx: &mut SyscallContext,
        pathname: ForeignPtr<std::ffi::c_char>,
        argv: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
        envp: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
    ) -> Result<i64, SyscallError> {
        let mut path_buf = [0u8; linux_api::limits::PATH_MAX];
        let path_buf_capacity = path_buf.len();
        let path = ctx.objs.process.memory_borrow().copy_str_from_ptr(
            &mut path_buf,
            ForeignArrayPtr::new(pathname.cast::<u8>(), path_buf_capacity),
        )?;

        Self::execve_common(
            ctx,
            &ctx.objs.process.current_working_dir(),
            path,
            argv,
            envp,
            0,
        )
        .map(|_| 0)
    }

    log_syscall!(
        execveat,
        /* rv */ i32,
        /* dirfd */ std::ffi::c_int,
        /* pathname */ SyscallStringArg,
        /* argv */ *const std::ffi::c_void,
        /* envp */ *const std::ffi::c_void,
        /* flags */ std::ffi::c_int,
    );
    pub fn execveat(
        _ctx: &mut SyscallContext,
        _dirfd: std::ffi::c_int,
        _pathname: ForeignPtr<std::ffi::c_char>,
        _argv: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
        _envp: ForeignPtr<ForeignPtr<std::ffi::c_char>>,
        _flags: std::ffi::c_int,
    ) -> Result<i64, SyscallError> {
        // TODO: Implement resolution of the path to the executable,
        // and then call `execve_common` with that.
        Err(Errno::ENOSYS.into())
    }

    log_syscall!(
        exit_group,
        /* rv */ std::ffi::c_int,
        /* error_code */ std::ffi::c_int,
    );
    pub fn exit_group(
        _ctx: &mut SyscallContext,
        error_code: std::ffi::c_int,
    ) -> Result<(), SyscallError> {
        log::trace!("Exit group with exit code {error_code}");
        Err(SyscallError::Native)
    }

    log_syscall!(
        set_tid_address,
        /* rv */ linux_api::posix_types::kernel_pid_t,
        /* tidptr */ *const std::ffi::c_int,
    );
    pub fn set_tid_address(
        ctx: &mut SyscallContext,
        tid_ptr: ForeignPtr<std::ffi::c_int>,
    ) -> Result<kernel_pid_t, SyscallError> {
        ctx.objs
            .thread
            .set_tid_address(tid_ptr.cast::<libc::pid_t>());
        Ok(ctx.objs.thread.id().into())
    }

    log_syscall!(
        uname,
        /* rv */ std::ffi::c_int,
        /* name */ *const std::ffi::c_void,
    );
    pub fn uname(
        ctx: &mut SyscallContext,
        name_ptr: ForeignPtr<linux_api::utsname::new_utsname>,
    ) -> Result<(), SyscallError> {
        // NOTE: On linux x86-64, `SYS_uname` corresponds with `__NR_uname` which calls
        // `sys_newuname` and not `sys_uname`. The correct mapping is:
        //
        // - __NR_oldolduname -> sys_olduname
        // - __NR_olduname -> sys_uname
        // - __NR_uname -> sys_newuname
        //
        // Some online resources such as the chromium syscall table are incorrect.

        let mut name: linux_api::utsname::new_utsname = shadow_pod::zeroed();

        let nodename = u8_to_i8_slice(ctx.objs.host.info().name.as_bytes());

        // Currently hardcoded with values reported in Debian 12
        let sysname = u8_to_i8_slice(&b"Linux"[..]);
        let release = u8_to_i8_slice(&b"6.1.0-25-amd64"[..]);
        let version = u8_to_i8_slice(&b"#1 SMP PREEMPT_DYNAMIC Debian 6.1.106-3 (2024-08-26)"[..]);
        let machine = u8_to_i8_slice(&b"x86_64"[..]);

        name.sysname[..sysname.len()].copy_from_slice(sysname);
        name.nodename[..nodename.len()].copy_from_slice(nodename);
        name.release[..release.len()].copy_from_slice(release);
        name.version[..version.len()].copy_from_slice(version);
        name.machine[..machine.len()].copy_from_slice(machine);

        ctx.objs
            .process
            .memory_borrow_mut()
            .write(name_ptr, &name)?;

        Ok(())
    }

    log_syscall!(
        chdir,
        /* rv */ std::ffi::c_int,
        /* path */ SyscallStringArg,
    );
    pub fn chdir(
        ctx: &mut SyscallContext,
        path: ForeignPtr<std::ffi::c_char>,
    ) -> Result<(), SyscallError> {
        // The native working directory must match the emulated one
        // <https://github.com/shadow/shadow/issues/2960>. First execute the
        // native chdir, propagating any failures.
        let (process, thread) = ctx.objs.split_thread();
        thread.native_chdir(&process, path)?;

        // Update our internal copy of the cwd.
        //
        // We could try to work it out ourselves based on the previous cwd and
        // the path we were passed, but this seems a bit tricky and error-prone.
        //
        // We could have the managed thread execute a native `getcwd`, but we'd
        // also need to have it allocate and free memory to use with it, making
        // this a bit complex and high overhead.
        //
        // Instead we use the proc file system. `/proc/<pid>/cwd` should be a
        // symbolic link to the actual working dir we just set.
        let procpath = format!("/proc/{}/cwd", thread.native_tid().as_raw_nonzero().get());
        let newcwd = std::fs::read_link(&procpath)
            .unwrap_or_else(|e| panic!("Couldn't find new cwd {procpath}: {e:?}"));
        let mut newcwd = newcwd.into_os_string().into_vec();
        newcwd.push(0);
        let newcwd = CString::from_vec_with_nul(newcwd).unwrap();
        process.process.set_current_working_dir(newcwd);
        Ok(())
    }
}