petgraph/algo/
matching.rs

1use alloc::{collections::VecDeque, vec, vec::Vec};
2use core::hash::Hash;
3
4use crate::visit::{
5    EdgeRef, GraphBase, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, NodeCount, NodeIndexable,
6    VisitMap, Visitable,
7};
8
9/// Computed
10/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
11/// of the graph.
12pub struct Matching<G: GraphBase> {
13    graph: G,
14    mate: Vec<Option<G::NodeId>>,
15    n_edges: usize,
16}
17
18impl<G> Matching<G>
19where
20    G: GraphBase,
21{
22    fn new(graph: G, mate: Vec<Option<G::NodeId>>, n_edges: usize) -> Self {
23        Self {
24            graph,
25            mate,
26            n_edges,
27        }
28    }
29}
30
31impl<G> Matching<G>
32where
33    G: NodeIndexable,
34{
35    /// Gets the matched counterpart of given node, if there is any.
36    ///
37    /// Returns `None` if the node is not matched or does not exist.
38    pub fn mate(&self, node: G::NodeId) -> Option<G::NodeId> {
39        self.mate.get(self.graph.to_index(node)).and_then(|&id| id)
40    }
41
42    /// Iterates over all edges from the matching.
43    ///
44    /// An edge is represented by its endpoints. The graph is considered
45    /// undirected and every pair of matched nodes is reported only once.
46    pub fn edges(&self) -> MatchedEdges<'_, G> {
47        MatchedEdges {
48            graph: &self.graph,
49            mate: self.mate.as_slice(),
50            current: 0,
51        }
52    }
53
54    /// Iterates over all nodes from the matching.
55    pub fn nodes(&self) -> MatchedNodes<'_, G> {
56        MatchedNodes {
57            graph: &self.graph,
58            mate: self.mate.as_slice(),
59            current: 0,
60        }
61    }
62
63    /// Returns `true` if given edge is in the matching, or `false` otherwise.
64    ///
65    /// If any of the nodes does not exist, `false` is returned.
66    pub fn contains_edge(&self, a: G::NodeId, b: G::NodeId) -> bool {
67        match self.mate(a) {
68            Some(mate) => mate == b,
69            None => false,
70        }
71    }
72
73    /// Returns `true` if given node is in the matching, or `false` otherwise.
74    ///
75    /// If the node does not exist, `false` is returned.
76    pub fn contains_node(&self, node: G::NodeId) -> bool {
77        self.mate(node).is_some()
78    }
79
80    /// Gets the number of matched **edges**.
81    pub fn len(&self) -> usize {
82        self.n_edges
83    }
84
85    /// Returns `true` if the number of matched **edges** is 0.
86    pub fn is_empty(&self) -> bool {
87        self.len() == 0
88    }
89}
90
91impl<G> Matching<G>
92where
93    G: NodeCount,
94{
95    /// Returns `true` if the matching is perfect.
96    ///
97    /// A matching is
98    /// [*perfect*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
99    /// if every node in the graph is incident to an edge from the matching.
100    pub fn is_perfect(&self) -> bool {
101        let n_nodes = self.graph.node_count();
102        n_nodes % 2 == 0 && self.n_edges == n_nodes / 2
103    }
104}
105
106trait WithDummy: NodeIndexable {
107    fn dummy_idx(&self) -> usize;
108    /// Convert `i` to a node index, returns None for the dummy node
109    fn try_from_index(&self, i: usize) -> Option<Self::NodeId>;
110}
111
112impl<G: NodeIndexable> WithDummy for G {
113    fn dummy_idx(&self) -> usize {
114        // Gabow numbers the vertices from 1 to n, and uses 0 as the dummy
115        // vertex. Our vertex indices are zero-based and so we use the node
116        // bound as the dummy node.
117        self.node_bound()
118    }
119
120    fn try_from_index(&self, i: usize) -> Option<Self::NodeId> {
121        if i != self.dummy_idx() {
122            Some(self.from_index(i))
123        } else {
124            None
125        }
126    }
127}
128
129pub struct MatchedNodes<'a, G: GraphBase> {
130    graph: &'a G,
131    mate: &'a [Option<G::NodeId>],
132    current: usize,
133}
134
135impl<G> Iterator for MatchedNodes<'_, G>
136where
137    G: NodeIndexable,
138{
139    type Item = G::NodeId;
140
141    fn next(&mut self) -> Option<Self::Item> {
142        while self.current != self.mate.len() {
143            let current = self.current;
144            self.current += 1;
145
146            if self.mate[current].is_some() {
147                return Some(self.graph.from_index(current));
148            }
149        }
150
151        None
152    }
153}
154
155pub struct MatchedEdges<'a, G: GraphBase> {
156    graph: &'a G,
157    mate: &'a [Option<G::NodeId>],
158    current: usize,
159}
160
161impl<G> Iterator for MatchedEdges<'_, G>
162where
163    G: NodeIndexable,
164{
165    type Item = (G::NodeId, G::NodeId);
166
167    fn next(&mut self) -> Option<Self::Item> {
168        while self.current != self.mate.len() {
169            let current = self.current;
170            self.current += 1;
171
172            if let Some(mate) = self.mate[current] {
173                // Check if the mate is a node after the current one. If not, then
174                // do not report that edge since it has been already reported (the
175                // graph is considered undirected).
176                if self.graph.to_index(mate) > current {
177                    let this = self.graph.from_index(current);
178                    return Some((this, mate));
179                }
180            }
181        }
182
183        None
184    }
185}
186
187/// \[Generic\] Compute a
188/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using a
189/// greedy heuristic.
190///
191/// The input graph is treated as if undirected. The underlying heuristic is
192/// unspecified, but is guaranteed to be bounded by *O(|V| + |E|)*. No
193/// guarantees about the output are given other than that it is a valid
194/// matching.
195///
196/// If you require a maximum matching, use [`maximum_matching`][1] function
197/// instead.
198///
199/// [1]: fn.maximum_matching.html
200pub fn greedy_matching<G>(graph: G) -> Matching<G>
201where
202    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
203    G::NodeId: Eq + Hash,
204    G::EdgeId: Eq + Hash,
205{
206    let (mates, n_edges) = greedy_matching_inner(&graph);
207    Matching::new(graph, mates, n_edges)
208}
209
210#[inline]
211fn greedy_matching_inner<G>(graph: &G) -> (Vec<Option<G::NodeId>>, usize)
212where
213    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
214{
215    let mut mate = vec![None; graph.node_bound()];
216    let mut n_edges = 0;
217    let visited = &mut graph.visit_map();
218
219    for start in graph.node_identifiers() {
220        let mut last = Some(start);
221
222        // Function non_backtracking_dfs does not expand the node if it has been
223        // already visited.
224        non_backtracking_dfs(graph, start, visited, |next| {
225            // Alternate matched and unmatched edges.
226            if let Some(pred) = last.take() {
227                mate[graph.to_index(pred)] = Some(next);
228                mate[graph.to_index(next)] = Some(pred);
229                n_edges += 1;
230            } else {
231                last = Some(next);
232            }
233        });
234    }
235
236    (mate, n_edges)
237}
238
239fn non_backtracking_dfs<G, F>(graph: &G, source: G::NodeId, visited: &mut G::Map, mut visitor: F)
240where
241    G: Visitable + IntoNeighbors,
242    F: FnMut(G::NodeId),
243{
244    if visited.visit(source) {
245        for target in graph.neighbors(source) {
246            if !visited.is_visited(&target) {
247                visitor(target);
248                non_backtracking_dfs(graph, target, visited, visitor);
249
250                // Non-backtracking traversal, stop iterating over the
251                // neighbors.
252                break;
253            }
254        }
255    }
256}
257
258#[derive(Clone, Copy, Default)]
259enum Label<G: GraphBase> {
260    #[default]
261    None,
262    Start,
263    // If node v is outer node, then label(v) = w is another outer node on path
264    // from v to start u.
265    Vertex(G::NodeId),
266    // If node v is outer node, then label(v) = (r, s) are two outer vertices
267    // (connected by an edge)
268    Edge(G::EdgeId, [G::NodeId; 2]),
269    // Flag is a special label used in searching for the join vertex of two
270    // paths.
271    Flag(G::EdgeId),
272}
273
274impl<G: GraphBase> Label<G> {
275    fn is_outer(&self) -> bool {
276        self != &Label::None && !matches!(self, Label::Flag(_))
277    }
278
279    fn is_inner(&self) -> bool {
280        !self.is_outer()
281    }
282
283    fn to_vertex(&self) -> Option<G::NodeId> {
284        match *self {
285            Label::Vertex(v) => Some(v),
286            _ => None,
287        }
288    }
289
290    fn is_flagged(&self, edge: G::EdgeId) -> bool {
291        matches!(self, Label::Flag(flag) if flag == &edge)
292    }
293}
294
295impl<G: GraphBase> PartialEq for Label<G> {
296    fn eq(&self, other: &Self) -> bool {
297        match (self, other) {
298            (Label::None, Label::None) => true,
299            (Label::Start, Label::Start) => true,
300            (Label::Vertex(v1), Label::Vertex(v2)) => v1 == v2,
301            (Label::Edge(e1, _), Label::Edge(e2, _)) => e1 == e2,
302            (Label::Flag(e1), Label::Flag(e2)) => e1 == e2,
303            _ => false,
304        }
305    }
306}
307
308/// \[Generic\] Compute the [*maximum
309/// matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using
310/// [Gabow's algorithm][1].
311///
312/// [1]: https://dl.acm.org/doi/10.1145/321941.321942
313///
314/// The input graph is treated as if undirected. The algorithm runs in
315/// *O(|V|³)*. An algorithm with a better time complexity might be used in the
316/// future.
317///
318/// **Panics** if `g.node_bound()` is `usize::MAX`.
319///
320/// # Examples
321///
322/// ```
323/// use petgraph::prelude::*;
324/// use petgraph::algo::maximum_matching;
325///
326/// // The example graph:
327/// //
328/// //    +-- b ---- d ---- f
329/// //   /    |      |
330/// //  a     |      |
331/// //   \    |      |
332/// //    +-- c ---- e
333/// //
334/// // Maximum matching: { (a, b), (c, e), (d, f) }
335///
336/// let mut graph: UnGraph<(), ()> = UnGraph::new_undirected();
337/// let a = graph.add_node(());
338/// let b = graph.add_node(());
339/// let c = graph.add_node(());
340/// let d = graph.add_node(());
341/// let e = graph.add_node(());
342/// let f = graph.add_node(());
343/// graph.extend_with_edges(&[(a, b), (a, c), (b, c), (b, d), (c, e), (d, e), (d, f)]);
344///
345/// let matching = maximum_matching(&graph);
346/// assert!(matching.contains_edge(a, b));
347/// assert!(matching.contains_edge(c, e));
348/// assert_eq!(matching.mate(d), Some(f));
349/// assert_eq!(matching.mate(f), Some(d));
350/// ```
351pub fn maximum_matching<G>(graph: G) -> Matching<G>
352where
353    G: Visitable + NodeIndexable + IntoNodeIdentifiers + IntoEdges,
354{
355    // The dummy identifier needs an unused index
356    assert_ne!(
357        graph.node_bound(),
358        usize::MAX,
359        "The input graph capacity should be strictly less than core::usize::MAX."
360    );
361
362    // Greedy algorithm should create a fairly good initial matching. The hope
363    // is that it speeds up the computation by doing les work in the complex
364    // algorithm.
365    let (mut mate, mut n_edges) = greedy_matching_inner(&graph);
366
367    // Gabow's algorithm uses a dummy node in the mate array.
368    mate.push(None);
369    let len = graph.node_bound() + 1;
370    debug_assert_eq!(mate.len(), len);
371
372    let mut label: Vec<Label<G>> = vec![Label::None; len];
373    let mut first_inner = vec![usize::MAX; len];
374    let visited = &mut graph.visit_map();
375
376    for start in 0..graph.node_bound() {
377        if mate[start].is_some() {
378            // The vertex is already matched. A start must be a free vertex.
379            continue;
380        }
381
382        // Begin search from the node.
383        label[start] = Label::Start;
384        first_inner[start] = graph.dummy_idx();
385        graph.reset_map(visited);
386
387        // start is never a dummy index
388        let start = graph.from_index(start);
389
390        // Queue will contain outer vertices that should be processed next. The
391        // start vertex is considered an outer vertex.
392        let mut queue = VecDeque::new();
393        queue.push_back(start);
394        // Mark the start vertex so it is not processed repeatedly.
395        visited.visit(start);
396
397        'search: while let Some(outer_vertex) = queue.pop_front() {
398            for edge in graph.edges(outer_vertex) {
399                if edge.source() == edge.target() {
400                    // Ignore self-loops.
401                    continue;
402                }
403
404                let other_vertex = edge.target();
405                let other_idx = graph.to_index(other_vertex);
406
407                if mate[other_idx].is_none() && other_vertex != start {
408                    // An augmenting path was found. Augment the matching. If
409                    // `other` is actually the start node, then the augmentation
410                    // must not be performed, because the start vertex would be
411                    // incident to two edges, which violates the matching
412                    // property.
413                    mate[other_idx] = Some(outer_vertex);
414                    augment_path(&graph, outer_vertex, other_vertex, &mut mate, &label);
415                    n_edges += 1;
416
417                    // The path is augmented, so the start is no longer free
418                    // vertex. We need to begin with a new start.
419                    break 'search;
420                } else if label[other_idx].is_outer() {
421                    // The `other` is an outer vertex (a label has been set to
422                    // it). An odd cycle (blossom) was found. Assign this edge
423                    // as a label to all inner vertices in paths P(outer) and
424                    // P(other).
425                    find_join(
426                        &graph,
427                        edge,
428                        &mate,
429                        &mut label,
430                        &mut first_inner,
431                        |labeled| {
432                            if visited.visit(labeled) {
433                                queue.push_back(labeled);
434                            }
435                        },
436                    );
437                } else {
438                    let mate_vertex = mate[other_idx];
439                    let mate_idx = mate_vertex.map_or(graph.dummy_idx(), |id| graph.to_index(id));
440
441                    if label[mate_idx].is_inner() {
442                        // Mate of `other` vertex is inner (no label has been
443                        // set to it so far). But it actually is an outer vertex
444                        // (it is on a path to the start vertex that begins with
445                        // a matched edge, since it is a mate of `other`).
446                        // Assign the label of this mate to the `outer` vertex,
447                        // so the path for it can be reconstructed using `mate`
448                        // and this label.
449                        label[mate_idx] = Label::Vertex(outer_vertex);
450                        first_inner[mate_idx] = other_idx;
451                    }
452
453                    // Add the vertex to the queue only if it's not the dummy and this is its first
454                    // discovery.
455                    if let Some(mate_vertex) = mate_vertex {
456                        if visited.visit(mate_vertex) {
457                            queue.push_back(mate_vertex);
458                        }
459                    }
460                }
461            }
462        }
463
464        // Reset the labels. All vertices are inner for the next search.
465        for lbl in label.iter_mut() {
466            *lbl = Label::None;
467        }
468    }
469
470    // Discard the dummy node.
471    mate.pop();
472
473    Matching::new(graph, mate, n_edges)
474}
475
476fn find_join<G, F>(
477    graph: &G,
478    edge: G::EdgeRef,
479    mate: &[Option<G::NodeId>],
480    label: &mut [Label<G>],
481    first_inner: &mut [usize],
482    mut visitor: F,
483) where
484    G: IntoEdges + NodeIndexable + Visitable,
485    F: FnMut(G::NodeId),
486{
487    // Simultaneously traverse the inner vertices on paths P(source) and
488    // P(target) to find a join vertex - an inner vertex that is shared by these
489    // paths.
490    let source = graph.to_index(edge.source());
491    let target = graph.to_index(edge.target());
492
493    let mut left = first_inner[source];
494    let mut right = first_inner[target];
495
496    if left == right {
497        // No vertices can be labeled, since both paths already refer to a
498        // common vertex - the join.
499        return;
500    }
501
502    // Flag the (first) inner vertices. This ensures that they are assigned the
503    // join as their first inner vertex.
504    let flag = Label::Flag(edge.id());
505    label[left] = flag;
506    label[right] = flag;
507
508    // Find the join.
509    let join = loop {
510        // Swap the sides. Do not swap if the right side is already finished.
511        if right != graph.dummy_idx() {
512            core::mem::swap(&mut left, &mut right);
513        }
514
515        // Set left to the next inner vertex in P(source) or P(target).
516        // The unwraps are safe because left is not the dummy node.
517        let left_mate = graph.to_index(mate[left].unwrap());
518        let next_inner = label[left_mate].to_vertex().unwrap();
519        left = first_inner[graph.to_index(next_inner)];
520
521        if !label[left].is_flagged(edge.id()) {
522            // The inner vertex is not flagged yet, so flag it.
523            label[left] = flag;
524        } else {
525            // The inner vertex is already flagged. It means that the other side
526            // had to visit it already. Therefore it is the join vertex.
527            break left;
528        }
529    };
530
531    // Label all inner vertices on P(source) and P(target) with the found join.
532    for endpoint in [source, target].iter().copied() {
533        let mut inner = first_inner[endpoint];
534        while inner != join {
535            // Notify the caller about labeling a vertex.
536            if let Some(ix) = graph.try_from_index(inner) {
537                visitor(ix);
538            }
539
540            label[inner] = Label::Edge(edge.id(), [edge.source(), edge.target()]);
541            first_inner[inner] = join;
542            let inner_mate = graph.to_index(mate[inner].unwrap());
543            let next_inner = label[inner_mate].to_vertex().unwrap();
544            inner = first_inner[graph.to_index(next_inner)];
545        }
546    }
547
548    for (vertex_idx, vertex_label) in label.iter().enumerate() {
549        // To all outer vertices that are on paths P(source) and P(target) until
550        // the join, se the join as their first inner vertex.
551        if vertex_idx != graph.dummy_idx()
552            && vertex_label.is_outer()
553            && label[first_inner[vertex_idx]].is_outer()
554        {
555            first_inner[vertex_idx] = join;
556        }
557    }
558}
559
560fn augment_path<G>(
561    graph: &G,
562    outer: G::NodeId,
563    other: G::NodeId,
564    mate: &mut [Option<G::NodeId>],
565    label: &[Label<G>],
566) where
567    G: NodeIndexable,
568{
569    let outer_idx = graph.to_index(outer);
570
571    let temp = mate[outer_idx];
572    let temp_idx = temp.map_or(graph.dummy_idx(), |id| graph.to_index(id));
573    mate[outer_idx] = Some(other);
574
575    if mate[temp_idx] != Some(outer) {
576        // We are at the end of the path and so the entire path is completely
577        // rematched/augmented.
578    } else if let Label::Vertex(vertex) = label[outer_idx] {
579        // The outer vertex has a vertex label which refers to another outer
580        // vertex on the path. So we set this another outer node as the mate for
581        // the previous mate of the outer node.
582        mate[temp_idx] = Some(vertex);
583        if let Some(temp) = temp {
584            augment_path(graph, vertex, temp, mate, label);
585        }
586    } else if let Label::Edge(_, [source, target]) = label[outer_idx] {
587        // The outer vertex has an edge label which refers to an edge in a
588        // blossom. We need to augment both directions along the blossom.
589        augment_path(graph, source, target, mate, label);
590        augment_path(graph, target, source, mate, label);
591    } else {
592        panic!("Unexpected label when augmenting path");
593    }
594}