foldhash/
lib.rs

1//! This crate provides foldhash, a fast, non-cryptographic, minimally
2//! DoS-resistant hashing algorithm designed for computational uses such as
3//! hashmaps, bloom filters, count sketching, etc.
4//!
5//! When should you **not** use foldhash:
6//!
7//! - You are afraid of people studying your long-running program's behavior
8//!   to reverse engineer its internal random state and using this knowledge to
9//!   create many colliding inputs for computational complexity attacks.
10//!
11//! - You expect foldhash to have a consistent output across versions or
12//!   platforms, such as for persistent file formats or communication protocols.
13//!   
14//! - You are relying on foldhash's properties for any kind of security.
15//!   Foldhash is **not appropriate for any cryptographic purpose**.
16//!
17//! Foldhash has two variants, one optimized for speed which is ideal for data
18//! structures such as hash maps and bloom filters, and one optimized for
19//! statistical quality which is ideal for algorithms such as
20//! [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog) and
21//! [MinHash](https://en.wikipedia.org/wiki/MinHash).
22//!
23//! Foldhash can be used in a `#![no_std]` environment by disabling its default
24//! `"std"` feature.
25//!
26//! # Usage
27//!
28//! The easiest way to use this crate with the standard library [`HashMap`] or
29//! [`HashSet`] is to import them from `foldhash` instead, along with the
30//! extension traits to make [`HashMap::new`] and [`HashMap::with_capacity`]
31//! work out-of-the-box:
32//!
33//! ```rust
34//! use foldhash::{HashMap, HashMapExt};
35//!
36//! let mut hm = HashMap::new();
37//! hm.insert(42, "hello");
38//! ```
39//!
40//! You can also avoid the convenience types and do it manually by initializing
41//! a [`RandomState`](fast::RandomState), for example if you are using a different hash map
42//! implementation like [`hashbrown`](https://docs.rs/hashbrown/):
43//!
44//! ```rust
45//! use hashbrown::HashMap;
46//! use foldhash::fast::RandomState;
47//!
48//! let mut hm = HashMap::with_hasher(RandomState::default());
49//! hm.insert("foo", "bar");
50//! ```
51//!
52//! The above methods are the recommended way to use foldhash, which will
53//! automatically generate a randomly generated hasher instance for you. If you
54//! absolutely must have determinism you can use [`FixedState`](fast::FixedState)
55//! instead, but note that this makes you trivially vulnerable to HashDoS
56//! attacks and might lead to quadratic runtime when moving data from one
57//! hashmap/set into another:
58//!
59//! ```rust
60//! use std::collections::HashSet;
61//! use foldhash::fast::FixedState;
62//!
63//! let mut hm = HashSet::with_hasher(FixedState::with_seed(42));
64//! hm.insert([1, 10, 100]);
65//! ```
66//!
67//! If you rely on statistical properties of the hash for the correctness of
68//! your algorithm, such as in [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog),
69//! it is suggested to use the [`RandomState`](quality::RandomState)
70//! or [`FixedState`](quality::FixedState) from the [`quality`] module instead
71//! of the [`fast`] module. The latter is optimized purely for speed in hash
72//! tables and has known statistical imperfections.
73//!
74//! Finally, you can also directly use the [`RandomState`](quality::RandomState)
75//! or [`FixedState`](quality::FixedState) to manually hash items using the
76//! [`BuildHasher`](std::hash::BuildHasher) trait:
77//! ```rust
78//! use std::hash::BuildHasher;
79//! use foldhash::quality::RandomState;
80//!
81//! let random_state = RandomState::default();
82//! let hash = random_state.hash_one("hello world");
83//! ```
84//!
85//! ## Seeding
86//!
87//! Foldhash relies on a single 8-byte per-hasher seed which should be ideally
88//! be different from each instance to instance, and also a larger
89//! [`SharedSeed`] which may be shared by many different instances.
90//!
91//! To reduce overhead, this [`SharedSeed`] is typically initialized once and
92//! stored. To prevent each hashmap unnecessarily containing a reference to this
93//! value there are three kinds of [`BuildHasher`](core::hash::BuildHasher)s
94//! foldhash provides (both for [`fast`] and [`quality`]):
95//!
96//! 1. [`RandomState`](fast::RandomState), which always generates a
97//!    random per-hasher seed and implicitly stores a reference to [`SharedSeed::global_random`].
98//! 2. [`FixedState`](fast::FixedState), which by default uses a fixed
99//!    per-hasher seed and implicitly stores a reference to [`SharedSeed::global_fixed`].
100//! 3. [`SeedableRandomState`](fast::SeedableRandomState), which works like
101//!    [`RandomState`](fast::RandomState) by default but can be seeded in any manner.
102//!    This state must include an explicit reference to a [`SharedSeed`], and thus
103//!    this struct is 16 bytes as opposed to just 8 bytes for the previous two.
104
105#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
106#![warn(missing_docs)]
107
108pub mod fast;
109pub mod quality;
110mod seed;
111pub use seed::SharedSeed;
112
113#[cfg(feature = "std")]
114mod convenience;
115#[cfg(feature = "std")]
116pub use convenience::*;
117
118// Arbitrary constants with high entropy. Hexadecimal digits of pi were used.
119const ARBITRARY0: u64 = 0x243f6a8885a308d3;
120const ARBITRARY1: u64 = 0x13198a2e03707344;
121const ARBITRARY2: u64 = 0xa4093822299f31d0;
122const ARBITRARY3: u64 = 0x082efa98ec4e6c89;
123const ARBITRARY4: u64 = 0x452821e638d01377;
124const ARBITRARY5: u64 = 0xbe5466cf34e90c6c;
125const ARBITRARY6: u64 = 0xc0ac29b7c97c50dd;
126const ARBITRARY7: u64 = 0x3f84d5b5b5470917;
127const ARBITRARY8: u64 = 0x9216d5d98979fb1b;
128const ARBITRARY9: u64 = 0xd1310ba698dfb5ac;
129
130#[inline(always)]
131const fn folded_multiply(x: u64, y: u64) -> u64 {
132    // The following code path is only fast if 64-bit to 128-bit widening
133    // multiplication is supported by the architecture. Most 64-bit
134    // architectures except SPARC64 and Wasm64 support it. However, the target
135    // pointer width doesn't always indicate that we are dealing with a 64-bit
136    // architecture, as there are ABIs that reduce the pointer width, especially
137    // on AArch64 and x86-64. WebAssembly (regardless of pointer width) supports
138    // 64-bit to 128-bit widening multiplication with the `wide-arithmetic`
139    // proposal.
140    #[cfg(any(
141        all(
142            target_pointer_width = "64",
143            not(any(target_arch = "sparc64", target_arch = "wasm64")),
144        ),
145        target_arch = "aarch64",
146        target_arch = "x86_64",
147        all(target_family = "wasm", target_feature = "wide-arithmetic"),
148    ))]
149    {
150        // We compute the full u64 x u64 -> u128 product, this is a single mul
151        // instruction on x86-64, one mul plus one mulhi on ARM64.
152        let full = (x as u128).wrapping_mul(y as u128);
153        let lo = full as u64;
154        let hi = (full >> 64) as u64;
155
156        // The middle bits of the full product fluctuate the most with small
157        // changes in the input. This is the top bits of lo and the bottom bits
158        // of hi. We can thus make the entire output fluctuate with small
159        // changes to the input by XOR'ing these two halves.
160        lo ^ hi
161    }
162
163    #[cfg(not(any(
164        all(
165            target_pointer_width = "64",
166            not(any(target_arch = "sparc64", target_arch = "wasm64")),
167        ),
168        target_arch = "aarch64",
169        target_arch = "x86_64",
170        all(target_family = "wasm", target_feature = "wide-arithmetic"),
171    )))]
172    {
173        // u64 x u64 -> u128 product is quite expensive on 32-bit.
174        // We approximate it by expanding the multiplication and eliminating
175        // carries by replacing additions with XORs:
176        //    (2^32 hx + lx)*(2^32 hy + ly) =
177        //    2^64 hx*hy + 2^32 (hx*ly + lx*hy) + lx*ly ~=
178        //    2^64 hx*hy ^ 2^32 (hx*ly ^ lx*hy) ^ lx*ly
179        // Which when folded becomes:
180        //    (hx*hy ^ lx*ly) ^ (hx*ly ^ lx*hy).rotate_right(32)
181
182        let lx = x as u32;
183        let ly = y as u32;
184        let hx = (x >> 32) as u32;
185        let hy = (y >> 32) as u32;
186
187        let ll = (lx as u64).wrapping_mul(ly as u64);
188        let lh = (lx as u64).wrapping_mul(hy as u64);
189        let hl = (hx as u64).wrapping_mul(ly as u64);
190        let hh = (hx as u64).wrapping_mul(hy as u64);
191
192        (hh ^ ll) ^ (hl ^ lh).rotate_right(32)
193    }
194}
195
196#[inline(always)]
197const fn rotate_right(x: u64, r: u32) -> u64 {
198    #[cfg(any(
199        target_pointer_width = "64",
200        target_arch = "aarch64",
201        target_arch = "x86_64",
202        target_family = "wasm",
203    ))]
204    {
205        x.rotate_right(r)
206    }
207
208    #[cfg(not(any(
209        target_pointer_width = "64",
210        target_arch = "aarch64",
211        target_arch = "x86_64",
212        target_family = "wasm",
213    )))]
214    {
215        // On platforms without 64-bit arithmetic rotation can be slow, rotate
216        // each 32-bit half independently.
217        let lo = (x as u32).rotate_right(r);
218        let hi = ((x >> 32) as u32).rotate_right(r);
219        ((hi as u64) << 32) | lo as u64
220    }
221}
222
223/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
224fn hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64 {
225    // Process 32 bytes per iteration, 16 bytes from the start, 16 bytes from
226    // the end. On the last iteration these two chunks can overlap, but that is
227    // perfectly fine.
228    let left_to_right = bytes.chunks_exact(16);
229    let mut right_to_left = bytes.rchunks_exact(16);
230    for lo in left_to_right {
231        let hi = right_to_left.next().unwrap();
232        let unconsumed_start = lo.as_ptr();
233        let unconsumed_end = hi.as_ptr_range().end;
234        if unconsumed_start >= unconsumed_end {
235            break;
236        }
237
238        let a = u64::from_ne_bytes(lo[0..8].try_into().unwrap());
239        let b = u64::from_ne_bytes(lo[8..16].try_into().unwrap());
240        let c = u64::from_ne_bytes(hi[0..8].try_into().unwrap());
241        let d = u64::from_ne_bytes(hi[8..16].try_into().unwrap());
242        s0 = folded_multiply(a ^ s0, c ^ fold_seed);
243        s1 = folded_multiply(b ^ s1, d ^ fold_seed);
244    }
245
246    s0 ^ s1
247}
248
249/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
250#[cold]
251#[inline(never)]
252fn hash_bytes_long(
253    bytes: &[u8],
254    mut s0: u64,
255    mut s1: u64,
256    mut s2: u64,
257    mut s3: u64,
258    fold_seed: u64,
259) -> u64 {
260    let chunks = bytes.chunks_exact(64);
261    let remainder = chunks.remainder().len();
262    for chunk in chunks {
263        let a = u64::from_ne_bytes(chunk[0..8].try_into().unwrap());
264        let b = u64::from_ne_bytes(chunk[8..16].try_into().unwrap());
265        let c = u64::from_ne_bytes(chunk[16..24].try_into().unwrap());
266        let d = u64::from_ne_bytes(chunk[24..32].try_into().unwrap());
267        let e = u64::from_ne_bytes(chunk[32..40].try_into().unwrap());
268        let f = u64::from_ne_bytes(chunk[40..48].try_into().unwrap());
269        let g = u64::from_ne_bytes(chunk[48..56].try_into().unwrap());
270        let h = u64::from_ne_bytes(chunk[56..64].try_into().unwrap());
271        s0 = folded_multiply(a ^ s0, e ^ fold_seed);
272        s1 = folded_multiply(b ^ s1, f ^ fold_seed);
273        s2 = folded_multiply(c ^ s2, g ^ fold_seed);
274        s3 = folded_multiply(d ^ s3, h ^ fold_seed);
275    }
276    s0 ^= s2;
277    s1 ^= s3;
278
279    if remainder > 0 {
280        hash_bytes_medium(&bytes[bytes.len() - remainder.max(16)..], s0, s1, fold_seed)
281    } else {
282        s0 ^ s1
283    }
284}