petgraph/algo/bellman_ford.rs
1//! Bellman-Ford algorithms.
2
3use alloc::{vec, vec::Vec};
4
5use crate::prelude::*;
6
7use crate::visit::{IntoEdges, IntoNodeIdentifiers, NodeCount, NodeIndexable, VisitMap, Visitable};
8
9use super::{FloatMeasure, NegativeCycle};
10
11#[derive(Debug, Clone)]
12pub struct Paths<NodeId, EdgeWeight> {
13 pub distances: Vec<EdgeWeight>,
14 pub predecessors: Vec<Option<NodeId>>,
15}
16
17/// \[Generic\] Compute shortest paths from node `source` to all other.
18///
19/// Using the [Bellman–Ford algorithm][bf]; negative edge costs are
20/// permitted, but the graph must not have a cycle of negative weights
21/// (in that case it will return an error).
22///
23/// On success, return one vec with path costs, and another one which points
24/// out the predecessor of a node along a shortest path. The vectors
25/// are indexed by the graph's node indices.
26///
27/// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
28///
29/// # Example
30/// ```rust
31/// use petgraph::Graph;
32/// use petgraph::algo::bellman_ford;
33/// use petgraph::prelude::*;
34///
35/// let mut g = Graph::new();
36/// let a = g.add_node(()); // node with no weight
37/// let b = g.add_node(());
38/// let c = g.add_node(());
39/// let d = g.add_node(());
40/// let e = g.add_node(());
41/// let f = g.add_node(());
42/// g.extend_with_edges(&[
43/// (0, 1, 2.0),
44/// (0, 3, 4.0),
45/// (1, 2, 1.0),
46/// (1, 5, 7.0),
47/// (2, 4, 5.0),
48/// (4, 5, 1.0),
49/// (3, 4, 1.0),
50/// ]);
51///
52/// // Graph represented with the weight of each edge
53/// //
54/// // 2 1
55/// // a ----- b ----- c
56/// // | 4 | 7 |
57/// // d f | 5
58/// // | 1 | 1 |
59/// // \------ e ------/
60///
61/// let path = bellman_ford(&g, a);
62/// assert!(path.is_ok());
63/// let path = path.unwrap();
64/// assert_eq!(path.distances, vec![ 0.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
65/// assert_eq!(path.predecessors, vec![None, Some(a),Some(b),Some(a), Some(d), Some(e)]);
66///
67/// // Node f (indice 5) can be reach from a with a path costing 6.
68/// // Predecessor of f is Some(e) which predecessor is Some(d) which predecessor is Some(a).
69/// // Thus the path from a to f is a <-> d <-> e <-> f
70///
71/// let graph_with_neg_cycle = Graph::<(), f32, Undirected>::from_edges(&[
72/// (0, 1, -2.0),
73/// (0, 3, -4.0),
74/// (1, 2, -1.0),
75/// (1, 5, -25.0),
76/// (2, 4, -5.0),
77/// (4, 5, -25.0),
78/// (3, 4, -1.0),
79/// ]);
80///
81/// assert!(bellman_ford(&graph_with_neg_cycle, NodeIndex::new(0)).is_err());
82/// ```
83pub fn bellman_ford<G>(
84 g: G,
85 source: G::NodeId,
86) -> Result<Paths<G::NodeId, G::EdgeWeight>, NegativeCycle>
87where
88 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
89 G::EdgeWeight: FloatMeasure,
90{
91 let ix = |i| g.to_index(i);
92
93 // Step 1 and Step 2: initialize and relax
94 let (distances, predecessors) = bellman_ford_initialize_relax(g, source);
95
96 // Step 3: check for negative weight cycle
97 for i in g.node_identifiers() {
98 for edge in g.edges(i) {
99 let j = edge.target();
100 let w = *edge.weight();
101 if distances[ix(i)] + w < distances[ix(j)] {
102 return Err(NegativeCycle(()));
103 }
104 }
105 }
106
107 Ok(Paths {
108 distances,
109 predecessors,
110 })
111}
112
113/// \[Generic\] Find the path of a negative cycle reachable from node `source`.
114///
115/// Using the [find_negative_cycle][nc]; will search the Graph for negative cycles using
116/// [Bellman–Ford algorithm][bf]. If no negative cycle is found the function will return `None`.
117///
118/// If a negative cycle is found from source, return one vec with a path of `NodeId`s.
119///
120/// The time complexity of this algorithm should be the same as the Bellman-Ford (O(|V|·|E|)).
121///
122/// [nc]: https://blogs.asarkar.com/assets/docs/algorithms-curated/Negative-Weight%20Cycle%20Algorithms%20-%20Huang.pdf
123/// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
124///
125/// # Example
126/// ```rust
127/// use petgraph::Graph;
128/// use petgraph::algo::find_negative_cycle;
129/// use petgraph::prelude::*;
130///
131/// let graph_with_neg_cycle = Graph::<(), f32, Directed>::from_edges(&[
132/// (0, 1, 1.),
133/// (0, 2, 1.),
134/// (0, 3, 1.),
135/// (1, 3, 1.),
136/// (2, 1, 1.),
137/// (3, 2, -3.),
138/// ]);
139///
140/// let path = find_negative_cycle(&graph_with_neg_cycle, NodeIndex::new(0));
141/// assert_eq!(
142/// path,
143/// Some([NodeIndex::new(1), NodeIndex::new(3), NodeIndex::new(2)].to_vec())
144/// );
145/// ```
146pub fn find_negative_cycle<G>(g: G, source: G::NodeId) -> Option<Vec<G::NodeId>>
147where
148 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable + Visitable,
149 G::EdgeWeight: FloatMeasure,
150{
151 let ix = |i| g.to_index(i);
152 let mut path = Vec::<G::NodeId>::new();
153
154 // Step 1: initialize and relax
155 let (distance, predecessor) = bellman_ford_initialize_relax(g, source);
156
157 // Step 2: Check for negative weight cycle
158 'outer: for i in g.node_identifiers() {
159 for edge in g.edges(i) {
160 let j = edge.target();
161 let w = *edge.weight();
162 if distance[ix(i)] + w < distance[ix(j)] {
163 // Step 3: negative cycle found
164 let start = j;
165 let mut node = start;
166 let mut visited = g.visit_map();
167 // Go backward in the predecessor chain
168 loop {
169 let ancestor = match predecessor[ix(node)] {
170 Some(predecessor_node) => predecessor_node,
171 None => node, // no predecessor, self cycle
172 };
173 // We have only 2 ways to find the cycle and break the loop:
174 // 1. start is reached
175 if ancestor == start {
176 path.push(ancestor);
177 break;
178 }
179 // 2. some node was reached twice
180 else if visited.is_visited(&ancestor) {
181 // Drop any node in path that is before the first ancestor
182 let pos = path
183 .iter()
184 .position(|&p| p == ancestor)
185 .expect("we should always have a position");
186 path = path[pos..path.len()].to_vec();
187
188 break;
189 }
190
191 // None of the above, some middle path node
192 path.push(ancestor);
193 visited.visit(ancestor);
194 node = ancestor;
195 }
196 // We are done here
197 break 'outer;
198 }
199 }
200 }
201 if !path.is_empty() {
202 // Users will probably need to follow the path of the negative cycle
203 // so it should be in the reverse order than it was found by the algorithm.
204 path.reverse();
205 Some(path)
206 } else {
207 None
208 }
209}
210
211// Perform Step 1 and Step 2 of the Bellman-Ford algorithm.
212#[inline(always)]
213fn bellman_ford_initialize_relax<G>(
214 g: G,
215 source: G::NodeId,
216) -> (Vec<G::EdgeWeight>, Vec<Option<G::NodeId>>)
217where
218 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
219 G::EdgeWeight: FloatMeasure,
220{
221 // Step 1: initialize graph
222 let mut predecessor = vec![None; g.node_bound()];
223 let mut distance = vec![<_>::infinite(); g.node_bound()];
224 let ix = |i| g.to_index(i);
225 distance[ix(source)] = <_>::zero();
226
227 // Step 2: relax edges repeatedly
228 for _ in 1..g.node_count() {
229 let mut did_update = false;
230 for i in g.node_identifiers() {
231 for edge in g.edges(i) {
232 let j = edge.target();
233 let w = *edge.weight();
234 if distance[ix(i)] + w < distance[ix(j)] {
235 distance[ix(j)] = distance[ix(i)] + w;
236 predecessor[ix(j)] = Some(i);
237 did_update = true;
238 }
239 }
240 }
241 if !did_update {
242 break;
243 }
244 }
245 (distance, predecessor)
246}