shadow_shim/signals.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
use core::cell::Cell;
use linux_api::signal::{
defaultaction, sigaction, siginfo_t, sigset_t, stack_t, SigActionFlags, SigAltStackFlags,
Signal, SignalHandler,
};
use linux_api::ucontext::ucontext;
use log::{trace, warn};
use shadow_shim_helper_rs::shim_shmem;
use crate::tls::ShimTlsVar;
use crate::{global_host_shmem, tls_allow_native_syscalls, tls_process_shmem, tls_thread_shmem};
/// Information passed through to the SIGUSR1 signal handler. Contains the info
/// needed to call a managed code signal handler.
struct Sigusr1Info {
native_sigaltstack: Option<stack_t>,
siginfo: siginfo_t,
action: sigaction,
// May be NULL, in the case that we didn't get here in the context of an
// earlier signal handler (e.g. seccomp).
// We don't copy by value in case additional fields are added to the stuct
// definition, and because we currently accept a libc::ucontext_t in our C
// API, which *does* have extra fields at the end.
ctx: *mut ucontext,
}
static SIGUSR1_SIGINFO: ShimTlsVar<Cell<Option<Sigusr1Info>>> =
ShimTlsVar::new(&crate::SHIM_TLS, || Cell::new(None));
extern "C" fn handle_sigusr1(_signo: i32, _info: *mut siginfo_t, ctx: *mut core::ffi::c_void) {
let mut info = SIGUSR1_SIGINFO.get().take().unwrap();
let signo = info.siginfo.signal().unwrap().as_i32();
assert!(crate::tls_allow_native_syscalls::swap(false));
// SAFETY: Should have been initialized correctly in `process_signals`.
let handler = unsafe { info.action.handler() };
if let Some(stack) = &info.native_sigaltstack {
// We temporarily switched the sigaltstack so that this handler would
// run on the specified stack. Now switch back to the native sigaltstack (i.e.
// the one Shadow originally configured for *it's* signal handling).
unsafe { linux_api::signal::sigaltstack(Some(stack), None) }.unwrap();
}
// SAFETY: Not particularly. We're calling a handler provided by managed code, which
// we don't attempt to analyze or sandbox. A "well behaved" handler should be safe to
// call here, but it could do anything including things that are unsound in Rust.
match handler {
linux_api::signal::SignalHandler::Handler(handler_fn) => unsafe { handler_fn(signo) },
linux_api::signal::SignalHandler::Action(action_fn) => unsafe {
// If there's an "earlier" context, we use it. This might be important e.g.
// when handling a signal like SIGSEGV, where the handler might actually
// inspect individual register values.
//
// Otherwise, use the the context that the kernel gave us for *this* signal
// handler. The register values won't make much sense to the handler, but
// it should WAI with functionality like `swapcontext`, which might be done
// in an implementation of user-space threads.
let ctx: *mut ucontext = if info.ctx.is_null() {
log::warn!("Passing a synthetic context to managed code signal handler");
ctx.cast()
} else {
info.ctx
};
action_fn(signo, &mut info.siginfo, ctx.cast::<core::ffi::c_void>())
},
linux_api::signal::SignalHandler::SigIgn | linux_api::signal::SignalHandler::SigDfl => {
panic!("No handler")
}
}
assert!(!crate::tls_allow_native_syscalls::swap(true));
}
fn die_with_fatal_signal(sig: Signal) -> ! {
assert!(crate::tls_allow_native_syscalls::get());
if sig == Signal::SIGKILL {
// No need to restore default action, and trying to do so would fail.
} else {
let action = sigaction::new_with_default_restorer(
SignalHandler::SigDfl,
SigActionFlags::empty(),
sigset_t::EMPTY,
);
unsafe { linux_api::signal::rt_sigaction(sig, &action, None) }.unwrap();
}
let pid = rustix::process::getpid();
rustix::process::kill_process(pid, rustix::process::Signal::from_raw(sig.into()).unwrap())
.unwrap();
unreachable!()
}
/// Handle pending unblocked signals, and return whether *all* corresponding
/// signal actions had the SA_RESTART flag set.
///
/// `ucontext` may be NULL.
///
/// # Safety
///
/// `ucontext` must be dereferenceable if not NULL.
///
/// Configured handlers for all pending unblocked signals must be safe to call. (Which
/// we basically can't ensure).
pub unsafe fn process_signals(mut ucontext: Option<&mut ucontext>) -> bool {
let mut host = crate::global_host_shmem::get();
let mut host_lock = host.protected().lock();
let mut restartable = true;
loop {
let Some((sig, siginfo)) = tls_process_shmem::with(|process| {
tls_thread_shmem::with(|thread| {
shim_shmem::take_pending_unblocked_signal(&host_lock, process, thread)
})
}) else {
break;
};
let action = tls_process_shmem::with(|process| *unsafe {
process.protected.borrow(&host_lock.root).signal_action(sig)
});
if matches!(unsafe { action.handler() }, SignalHandler::SigIgn) {
continue;
}
if matches!(unsafe { action.handler() }, SignalHandler::SigDfl) {
match defaultaction(sig) {
linux_api::signal::LinuxDefaultAction::IGN => continue,
linux_api::signal::LinuxDefaultAction::CORE
| linux_api::signal::LinuxDefaultAction::TERM => {
drop(host_lock);
die_with_fatal_signal(sig);
}
linux_api::signal::LinuxDefaultAction::STOP => unimplemented!(),
linux_api::signal::LinuxDefaultAction::CONT => unimplemented!(),
}
}
trace!("Handling emulated signal {sig:?}");
let (sigaltstack_orig_emu, mask_orig_emu): (stack_t, sigset_t) =
tls_thread_shmem::with(|thread| {
let t = thread.protected.borrow(&host_lock.root);
// SAFETY: Pointers in the sigaltstack are valid in the managed process.
let stack = unsafe { t.sigaltstack() };
(*stack, t.blocked_signals)
});
let mask_emu_during_handler = {
let mut m = action.mask() | mask_orig_emu;
if !action.flags_retain().contains(SigActionFlags::SA_NODEFER) {
m.add(sig)
}
m
};
tls_thread_shmem::with(|thread| {
thread.protected.borrow_mut(&host_lock.root).blocked_signals = mask_emu_during_handler
});
if action.flags_retain().contains(SigActionFlags::SA_RESETHAND) {
tls_process_shmem::with(|process| {
// SAFETY: The handler (`SigDfl`) is sound.
unsafe {
*process
.protected
.borrow_mut(&host_lock.root)
.signal_action_mut(sig) = sigaction::new_with_default_restorer(
SignalHandler::SigDfl,
SigActionFlags::empty(),
sigset_t::EMPTY,
)
};
});
}
if !action.flags_retain().contains(SigActionFlags::SA_RESTART) {
restartable = false;
}
let sigaltstack_orig_native = if action.flags_retain().contains(SigActionFlags::SA_ONSTACK)
&& !sigaltstack_orig_emu
.flags_retain()
.contains(SigAltStackFlags::SS_DISABLE)
{
// Call the handler on the configured stack.
if sigaltstack_orig_emu
.flags_retain()
.contains(SigAltStackFlags::SS_ONSTACK)
{
// The specified stack is already in use.
//
// This *could* be ok, e.g. if the stack is in use by the
// current thread, and never unwound back to the earlier use;
// e.g. if the handler exits the process. golang appears to do
// this in its default SIGTERM handling. (See
// https://github.com/shadow/shadow/issues/3395).
//
// In other cases things could go horribly, but it'd be a bug in
// the managed process rather than in shadow itself.
log::debug!("Signal handler configured to switch to a stack that's already in use. This could go badly.")
}
// Update the signal-stack configuration while the handler is being run.
let sigaltstack_emu_during_handler = if sigaltstack_orig_emu
.flags_retain()
.contains(SigAltStackFlags::SS_AUTODISARM)
{
stack_t::new(core::ptr::null_mut(), SigAltStackFlags::SS_DISABLE, 0)
} else {
stack_t::new(
sigaltstack_orig_emu.sp(),
sigaltstack_orig_emu.flags_retain() | SigAltStackFlags::SS_ONSTACK,
sigaltstack_orig_emu.size(),
)
};
tls_thread_shmem::with(|thread| {
// SAFETY: stack pointer in the assigned stack (if any) is valid in
// the managed process.
unsafe {
*thread
.protected
.borrow_mut(&host_lock.root)
.sigaltstack_mut() = sigaltstack_emu_during_handler
};
});
let mut sigaltstack_orig_native =
stack_t::new(core::ptr::null_mut(), SigAltStackFlags::empty(), 0);
// Set the *native* sigaltstack to the *emulated* sigaltstack,
// letting the kernel do the stack switch for us.
unsafe {
linux_api::signal::sigaltstack(
Some(&stack_t::new(
sigaltstack_orig_emu.sp(),
SigAltStackFlags::SS_AUTODISARM,
sigaltstack_orig_emu.size(),
)),
Some(&mut sigaltstack_orig_native),
)
}
.unwrap();
Some(sigaltstack_orig_native)
} else {
None
};
// Package up what our native signal handler will need to invoke the
// managed code syscall handler for the emulated signal.
let prev = SIGUSR1_SIGINFO.get().replace(Some(Sigusr1Info {
native_sigaltstack: sigaltstack_orig_native,
siginfo,
action,
ctx: ucontext
.as_mut()
.map(|c| core::ptr::from_mut(*c))
.unwrap_or(core::ptr::null_mut()),
}));
assert!(prev.is_none());
// Drop locks and references, since the handler could do ~anything,
// including exit, recurse to here again, or `swapcontext` and never
// return.
drop(host_lock);
drop(host);
// We raise a signal natively to let the kernel create a ucontext for us
// and switch stacks. We invoke the managed code's signal handler from our
// signal handler.
//
// We could potentially skip this if the managed code signal handler isn't
// configured to switch stacks and either doesn't need a context or we already
// have one. But that'd mean another code path to maintain, and signal
// handling shouldn't be on the hot path of performance for most
// applications. (We could also consider implementing the stack switch
// and/or creation of a ucontext ourselves, but again that would be more
// complex code to maintain).
// We install the signal handler every time, so that we can decide
// whether to set `SA_ONSTACK` or not based on whether we actually need
// to switch stacks.
let flags = SigActionFlags::SA_SIGINFO
| SigActionFlags::SA_NODEFER
| SigActionFlags::SA_RESETHAND
| if sigaltstack_orig_native.is_some() {
SigActionFlags::SA_ONSTACK
} else {
SigActionFlags::empty()
};
// SAFETY: `handle_sigusr1` is sound, if the handler we're calling is.
unsafe {
linux_api::signal::rt_sigaction(
Signal::SIGUSR1,
&sigaction::new_with_default_restorer(
SignalHandler::Action(handle_sigusr1),
flags,
sigset_t::EMPTY,
),
None,
)
}
.unwrap();
let pid = rustix::process::getpid();
let tid = rustix::thread::gettid();
linux_api::signal::tgkill(pid.into(), tid.into(), Some(Signal::SIGUSR1)).unwrap();
// Reacquire locks and references.
host = crate::global_host_shmem::get();
host_lock = host.protected().lock();
// Restore mask and stack
tls_thread_shmem::with(|thread| {
let mut thread = thread.protected.borrow_mut(&host_lock.root);
thread.blocked_signals = mask_orig_emu;
// SAFETY: Pointers are valid in managed process.
unsafe { *thread.sigaltstack_mut() = sigaltstack_orig_emu };
if let Some(s) = sigaltstack_orig_native {
// SAFETY: We're restoring the previous, presumably valid, stack.
unsafe { linux_api::signal::sigaltstack(Some(&s), None) }.unwrap();
}
});
}
restartable
}
extern "C" fn handle_hardware_error_signal(
signo: i32,
info: *mut siginfo_t,
ctx: *mut core::ffi::c_void,
) {
let old_native_syscall_flag = tls_allow_native_syscalls::swap(true);
let signal = Signal::try_from(signo).unwrap();
if old_native_syscall_flag {
// Error was raised from shim code.
die_with_fatal_signal(signal);
}
// Otherwise the error was raised from managed code, and could potentially
// be handled by a signal handler that it installed.
tls_thread_shmem::with(|thread| {
let host = global_host_shmem::get();
let host_lock = host.protected().lock();
let pending_signals = thread.protected.borrow(&host_lock.root).pending_signals;
if pending_signals.has(signal) {
warn!("Received signal {signal:?} when it was already pending");
} else {
let mut thread_protected = thread.protected.borrow_mut(&host_lock.root);
thread_protected.pending_signals |= signal.into();
thread_protected
.set_pending_standard_siginfo(signal, unsafe { info.as_ref().unwrap() });
}
});
let ctx = ctx.cast::<ucontext>();
// SAFETY: The kernel should have given us a valid `ucontext` here.
unsafe { process_signals(ctx.as_mut()) };
tls_allow_native_syscalls::swap(old_native_syscall_flag);
}
pub fn install_hardware_error_handlers() {
// SA_NODEFER: Don't block the current signal in the handler.
// Generating one of these signals while it is blocked is
// undefined behavior; the handler itself detects recursion.
// SA_SIGINFO: Required because we're specifying
// sa_sigaction.
// SA_ONSTACK: Use the alternate signal handling stack,
// to avoid interfering with userspace thread stacks.
let flags =
SigActionFlags::SA_SIGINFO | SigActionFlags::SA_NODEFER | SigActionFlags::SA_ONSTACK;
let handler = SignalHandler::Action(handle_hardware_error_signal);
let action = sigaction::new_with_default_restorer(handler, flags, sigset_t::EMPTY);
for signal in [
Signal::SIGSEGV,
Signal::SIGILL,
Signal::SIGBUS,
Signal::SIGFPE,
] {
// SAFETY: We've set up a valid handler.
unsafe { linux_api::signal::rt_sigaction(signal, &action, None) }.unwrap();
}
}
mod export {
use super::*;
/// Handle pending unblocked signals, and return whether *all* corresponding
/// signal actions had the SA_RESTART flag set.
///
/// `ucontext` will be passed through to handlers if non-NULL. This should
/// generally only be done if the caller has a `ucontext` that will be swapped to
/// after this code returns; e.g. one that was passed to our own signal handler,
/// which will be swapped to when that handler returns.
///
/// If `ucontext` is NULL, one will be created at the point where we invoke
/// the handler, and swapped back to when it returns.
/// TODO: Creating `ucontext_t` is currently only implemented for handlers that
/// execute on a sigaltstack.
///
/// # Safety
///
/// `ucontext` must be dereferenceable if not NULL.
///
/// Configured handlers for all pending unblocked signals must be safe to call. (Which
/// we basically can't ensure).
#[no_mangle]
pub unsafe extern "C-unwind" fn shim_process_signals(ucontext: *mut libc::ucontext_t) -> bool {
// `libc::ucontext_t` appears to be safe to cast to a kernel `ucontext`; as
// verified experimentally and by manual inspection of the definitions.
//
// The libc definition has some extra fields at the end, but we're
// careful not to copy the ucontext so they shouldn't hurt anything.
let ucontext: *mut ucontext = ucontext.cast();
// SAFETY: ensured by caller.
unsafe { process_signals(ucontext.as_mut()) }
}
/// Install signal handlers for signals that can be generated by hardware errors.
/// e.g. SIGSEGV
#[no_mangle]
pub unsafe extern "C-unwind" fn shim_install_hardware_error_handlers() {
install_hardware_error_handlers()
}
/// More-specialized error handlers (e.g. for rdtsc) can invoke this handler
/// directly when unable to handle the current signal (e.g. when a SIGSEGV wasn't
/// caused by an rdtsc instruction)
#[no_mangle]
pub unsafe extern "C-unwind" fn shim_handle_hardware_error_signal(
signo: i32,
info: *mut siginfo_t,
ctx: *mut core::ffi::c_void,
) {
handle_hardware_error_signal(signo, info, ctx)
}
}