shadow_rs/host/descriptor/socket/inet/
udp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
use std::collections::LinkedList;
use std::io::{Read, Write};
use std::net::{Ipv4Addr, SocketAddrV4};
use std::sync::Arc;

use atomic_refcell::AtomicRefCell;
use bytes::{Bytes, BytesMut};
use linux_api::errno::Errno;
use linux_api::ioctls::IoctlRequest;
use linux_api::socket::Shutdown;
use nix::sys::socket::{MsgFlags, SockaddrIn};
use shadow_shim_helper_rs::emulated_time::EmulatedTime;
use shadow_shim_helper_rs::syscall_types::ForeignPtr;

use crate::core::worker::Worker;
use crate::cshadow as c;
use crate::host::descriptor::listener::{StateEventSource, StateListenHandle, StateListenerFilter};
use crate::host::descriptor::socket::inet::{self, InetSocket};
use crate::host::descriptor::socket::{RecvmsgArgs, RecvmsgReturn, SendmsgArgs, ShutdownFlags};
use crate::host::descriptor::{
    File, FileMode, FileSignals, FileState, FileStatus, OpenFile, Socket, SyscallResult,
};
use crate::host::memory_manager::MemoryManager;
use crate::host::network::interface::FifoPacketPriority;
use crate::host::network::namespace::{AssociationHandle, NetworkNamespace};
use crate::host::syscall::io::{write_partial, IoVec, IoVecReader, IoVecWriter};
use crate::host::syscall::types::SyscallError;
use crate::network::packet::{PacketRc, PacketStatus};
use crate::utility::callback_queue::CallbackQueue;
use crate::utility::sockaddr::SockaddrStorage;
use crate::utility::{HostTreePointer, ObjectCounter};

/// Maximum size of a datagram we are allowed to send out over the network.
// 65,535 (2^16 - 1) - 20 (ip header) - 8 (udp header)
const CONFIG_DATAGRAM_MAX_SIZE: usize = 65507;

pub struct UdpSocket {
    event_source: StateEventSource,
    status: FileStatus,
    state: FileState,
    shutdown_status: ShutdownFlags,
    send_buffer: MessageBuffer<MessageSendHeader>,
    recv_buffer: MessageBuffer<MessageRecvHeader>,
    peer_addr: Option<SocketAddrV4>,
    bound_addr: Option<SocketAddrV4>,
    association: Option<AssociationHandle>,
    /// The receive time of the last packet returned to the managed process during a call to
    /// `recvmsg()`. Used for `SIOCGSTAMP`.
    recv_time_of_last_read_packet: Option<EmulatedTime>,
    // should only be used by `OpenFile` to make sure there is only ever one `OpenFile` instance for
    // this file
    has_open_file: bool,
    _counter: ObjectCounter,
}

impl UdpSocket {
    pub fn new(
        status: FileStatus,
        send_buf_size: usize,
        recv_buf_size: usize,
    ) -> Arc<AtomicRefCell<Self>> {
        let mut socket = Self {
            event_source: StateEventSource::new(),
            status,
            state: FileState::ACTIVE,
            shutdown_status: ShutdownFlags::empty(),
            send_buffer: MessageBuffer::new(send_buf_size),
            recv_buffer: MessageBuffer::new(recv_buf_size),
            peer_addr: None,
            bound_addr: None,
            association: None,
            recv_time_of_last_read_packet: None,
            has_open_file: false,
            _counter: ObjectCounter::new("UdpSocket"),
        };

        CallbackQueue::queue_and_run_with_legacy(|cb_queue| {
            socket.refresh_readable_writable(FileSignals::empty(), cb_queue)
        });

        Arc::new(AtomicRefCell::new(socket))
    }

    pub fn status(&self) -> FileStatus {
        self.status
    }

    pub fn set_status(&mut self, status: FileStatus) {
        self.status = status;
    }

    pub fn mode(&self) -> FileMode {
        FileMode::READ | FileMode::WRITE
    }

    pub fn has_open_file(&self) -> bool {
        self.has_open_file
    }

    pub fn supports_sa_restart(&self) -> bool {
        true
    }

    pub fn set_has_open_file(&mut self, val: bool) {
        self.has_open_file = val;
    }

    pub fn push_in_packet(
        &mut self,
        mut packet: PacketRc,
        cb_queue: &mut CallbackQueue,
        recv_time: EmulatedTime,
    ) {
        packet.add_status(PacketStatus::RcvSocketProcessed);

        if let Some(peer_addr) = self.peer_addr {
            if peer_addr != packet.src_address() {
                // connect(2): "If the socket sockfd is of type SOCK_DGRAM, then addr is the address
                // to which datagrams are sent by default, and the only address from which datagrams
                // are received."

                // we have a peer, but received a packet from a different source address than that
                // peer
                packet.add_status(PacketStatus::RcvSocketDropped);

                // TODO: There's a race condition where we check the packet's address only when
                // receiving the packet from the network interface, but the user could call
                // `connect()` to set a peer after we've already received and buffered this packet.
                // My guess is that this race condition exists in Linux as well, but ideally we
                // should add a test, and do another check when `recvmsg()` is called if we really
                // need to.

                return;
            }
        };

        // TODO: also check the dst address to make sure we are the intended socket?

        // don't bother copying the bytes if we know the push will fail
        if !self.recv_buffer.has_space() {
            packet.add_status(PacketStatus::RcvSocketDropped);
            return;
        }

        // in the future, the packet could contain the `Bytes` object itself and we could simply
        // transfer the `Bytes` directly from the packet to the buffer without copying the bytes

        let mut message = BytesMut::zeroed(packet.payload_size());
        let num_bytes_copied = packet.get_payload(&mut message);
        assert_eq!(num_bytes_copied, packet.payload_size());

        let header = MessageRecvHeader {
            src: packet.src_address(),
            dst: packet.dst_address(),
            recv_time,
        };

        // push the message to the receive buffer (shouldn't fail since we checked for available
        // space above)
        self.recv_buffer
            .push_message(message.freeze(), header)
            .unwrap();

        log::trace!("Added a packet to the UDP socket's recv buffer");
        packet.add_status(PacketStatus::RcvSocketBuffered);

        self.refresh_readable_writable(FileSignals::READ_BUFFER_GREW, cb_queue);
    }

    pub fn pull_out_packet(&mut self, cb_queue: &mut CallbackQueue) -> Option<PacketRc> {
        // pop the message from the send buffer
        let Some((message, header)) = self.send_buffer.pop_message() else {
            log::debug!(
                "Attempted to remove a message from the UDP socket's send buffer, but none available"
            );

            return None;
        };

        log::trace!("Removed a message from the UDP socket's send buffer");

        let mut packet = PacketRc::new();
        let priority = header.packet_priority;

        // in the future, the packet could contain the `Bytes` object itself and we could simply
        // transfer the `Bytes` directly from the buffer to the packet without copying the bytes

        packet.set_udp(header.src, header.dst);
        packet.set_payload(&message, priority);
        packet.add_status(PacketStatus::SndCreated);

        self.refresh_readable_writable(FileSignals::empty(), cb_queue);

        Some(packet)
    }

    pub fn peek_next_packet_priority(&self) -> Option<FifoPacketPriority> {
        self.send_buffer.buffer.front().map(|x| x.1.packet_priority)
    }

    pub fn has_data_to_send(&self) -> bool {
        !self.send_buffer.is_empty()
    }

    pub fn getsockname(&self) -> Result<Option<SockaddrIn>, Errno> {
        let mut addr = self
            .bound_addr
            .unwrap_or(SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0));

        // if we are bound to INADDR_ANY, we should instead return the IP used to communicate with
        // the connected peer (if we have one)
        if *addr.ip() == Ipv4Addr::UNSPECIFIED {
            if let Some(peer_addr) = self.peer_addr {
                addr.set_ip(*peer_addr.ip());
            }
        }

        Ok(Some(addr.into()))
    }

    pub fn getpeername(&self) -> Result<Option<SockaddrIn>, Errno> {
        Ok(Some(self.peer_addr.ok_or(Errno::ENOTCONN)?.into()))
    }

    pub fn address_family(&self) -> linux_api::socket::AddressFamily {
        linux_api::socket::AddressFamily::AF_INET
    }

    pub fn close(&mut self, cb_queue: &mut CallbackQueue) -> Result<(), SyscallError> {
        // drop the existing association handle to disassociate the socket
        self.association = None;

        self.update_state(
            /* mask= */ FileState::all(),
            FileState::CLOSED,
            FileSignals::empty(),
            cb_queue,
        );
        Ok(())
    }

    pub fn bind(
        socket: &Arc<AtomicRefCell<Self>>,
        addr: Option<&SockaddrStorage>,
        net_ns: &NetworkNamespace,
        rng: impl rand::Rng,
    ) -> Result<(), SyscallError> {
        // if the address pointer was NULL
        let Some(addr) = addr else {
            return Err(Errno::EFAULT.into());
        };

        // if not an inet socket address
        let Some(addr) = addr.as_inet() else {
            return Err(Errno::EINVAL.into());
        };

        let addr: SocketAddrV4 = (*addr).into();

        {
            let socket = socket.borrow();

            // if the socket is already bound
            if socket.bound_addr.is_some() {
                return Err(Errno::EINVAL.into());
            }

            // Since we're not bound, we must not have a peer. We may have a peer in the future if
            // `connect()` is called on this socket.
            assert!(socket.peer_addr.is_none());

            // must not have been associated with the network interface
            assert!(socket.association.is_none());
        }

        // this will allow us to receive packets from any peer
        let unspecified_addr = SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0);

        // associate the socket
        let (addr, handle) = inet::associate_socket(
            InetSocket::Udp(Arc::clone(socket)),
            addr,
            unspecified_addr,
            /* check_generic_peer= */ true,
            net_ns,
            rng,
        )?;

        // update the socket's local address
        {
            let mut socket = socket.borrow_mut();
            socket.bound_addr = Some(addr);
            socket.association = Some(handle);
        }

        Ok(())
    }

    pub fn readv(
        &mut self,
        _iovs: &[IoVec],
        _offset: Option<libc::off_t>,
        _flags: libc::c_int,
        _mem: &mut MemoryManager,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<libc::ssize_t, SyscallError> {
        // we could call UdpSocket::recvmsg() here, but for now we expect that there are no code
        // paths that would call UdpSocket::readv() since the readv() syscall handler should have
        // called UdpSocket::recvmsg() instead
        panic!("Called UdpSocket::readv() on a UDP socket");
    }

    pub fn writev(
        &mut self,
        _iovs: &[IoVec],
        _offset: Option<libc::off_t>,
        _flags: libc::c_int,
        _mem: &mut MemoryManager,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<libc::ssize_t, SyscallError> {
        // we could call UdpSocket::sendmsg() here, but for now we expect that there are no code
        // paths that would call UdpSocket::writev() since the writev() syscall handler should have
        // called UdpSocket::sendmsg() instead
        panic!("Called UdpSocket::writev() on a UDP socket");
    }

    pub fn sendmsg(
        socket: &Arc<AtomicRefCell<Self>>,
        args: SendmsgArgs,
        mem: &mut MemoryManager,
        net_ns: &NetworkNamespace,
        rng: impl rand::Rng,
        cb_queue: &mut CallbackQueue,
    ) -> Result<libc::ssize_t, SyscallError> {
        let mut socket_ref = socket.borrow_mut();

        // if the file's writing has been shut down, return EPIPE
        if socket_ref.shutdown_status.contains(ShutdownFlags::WRITE) {
            return Err(linux_api::errno::Errno::EPIPE.into());
        }

        let Some(mut flags) = MsgFlags::from_bits(args.flags) else {
            log::debug!("Unrecognized send flags: {:#b}", args.flags);
            return Err(Errno::EINVAL.into());
        };

        let dst_addr = match args.addr {
            Some(addr) => match addr.as_inet() {
                // an inet socket address
                Some(x) => (*x).into(),
                // not an inet socket address
                None => return Err(Errno::EAFNOSUPPORT.into()),
            },
            // no destination address provided
            None => match socket_ref.peer_addr {
                Some(x) => x,
                None => return Err(Errno::EDESTADDRREQ.into()),
            },
        };

        if socket_ref.status().contains(FileStatus::NONBLOCK) {
            flags.insert(MsgFlags::MSG_DONTWAIT);
        }

        let len: libc::size_t = args.iovs.iter().map(|x| x.len).sum();

        // TODO: should use IP fragmentation to make sure packets fit within the MTU
        if len > CONFIG_DATAGRAM_MAX_SIZE {
            return Err(linux_api::errno::Errno::EMSGSIZE.into());
        }

        // make sure that we're bound
        if socket_ref.bound_addr.is_some() {
            // we must have an association since we're bound
            assert!(socket_ref.association.is_some());
        } else {
            // we can't be unbound but have a peer
            assert!(socket_ref.peer_addr.is_none());
            assert!(socket_ref.association.is_none());

            // implicit bind (use default interface unless the remote peer is on loopback)
            // TODO: is this correct? or should we bind to UNSPECIFIED?
            let local_addr = if dst_addr.ip() == &std::net::Ipv4Addr::LOCALHOST {
                SocketAddrV4::new(Ipv4Addr::LOCALHOST, 0)
            } else {
                SocketAddrV4::new(net_ns.default_ip, 0)
            };

            // this will allow us to receive packets from any peer
            let unspecified_addr = SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0);

            let (local_addr, handle) = super::associate_socket(
                InetSocket::Udp(Arc::clone(socket)),
                local_addr,
                unspecified_addr,
                /* check_generic_peer= */ true,
                net_ns,
                rng,
            )?;

            socket_ref.bound_addr = Some(local_addr);
            socket_ref.association = Some(handle);
        }

        // run in a closure so that an early return doesn't skip checking if we should block
        let result = (|| {
            // don't bother copying the bytes if we know the push will fail
            if !socket_ref.send_buffer.has_space() {
                return Err(Errno::EWOULDBLOCK);
            }

            // write the iovs to an empty message
            let mut reader = IoVecReader::new(args.iovs, mem);
            let mut message = BytesMut::zeroed(len);
            reader
                .read_exact(&mut message[..])
                .map_err(|e| Errno::try_from(e).unwrap())?;

            // get the priority that we'll assign to the eventual packet
            let packet_priority =
                Worker::with_active_host(|host| host.get_next_packet_priority()).unwrap();

            let src_addr = socket_ref.bound_addr.unwrap();
            let src_addr = if src_addr.ip().is_unspecified() {
                // depending on the destination address, choose either localhost or the public IP
                // address
                if dst_addr.ip() == &std::net::Ipv4Addr::LOCALHOST {
                    SocketAddrV4::new(Ipv4Addr::LOCALHOST, src_addr.port())
                } else {
                    SocketAddrV4::new(net_ns.default_ip, src_addr.port())
                }
            } else {
                src_addr
            };

            let header = MessageSendHeader {
                src: src_addr,
                dst: dst_addr,
                packet_priority,
            };

            // push the message to the send buffer (shouldn't fail since we checked for available
            // space above)
            socket_ref
                .send_buffer
                .push_message(message.freeze(), header)
                .unwrap();

            // notify the host that this socket has packets to send
            let socket = Arc::clone(socket);
            let interface_ip = *socket_ref.bound_addr.unwrap().ip();
            cb_queue.add(move |_cb_queue| {
                Worker::with_active_host(|host| {
                    let socket = InetSocket::Udp(socket);
                    host.notify_socket_has_packets(interface_ip, &socket);
                })
                .unwrap();
            });

            Ok(len)
        })();

        socket_ref.refresh_readable_writable(FileSignals::empty(), cb_queue);

        // if the syscall would block and we don't have the MSG_DONTWAIT flag
        if result == Err(Errno::EWOULDBLOCK) && !flags.contains(MsgFlags::MSG_DONTWAIT) {
            return Err(SyscallError::new_blocked_on_file(
                File::Socket(Socket::Inet(InetSocket::Udp(socket.clone()))),
                FileState::WRITABLE,
                socket_ref.supports_sa_restart(),
            ));
        }

        Ok(result?.try_into().unwrap())
    }

    pub fn recvmsg(
        socket: &Arc<AtomicRefCell<Self>>,
        args: RecvmsgArgs,
        mem: &mut MemoryManager,
        cb_queue: &mut CallbackQueue,
    ) -> Result<RecvmsgReturn, SyscallError> {
        let socket_ref = &mut *socket.borrow_mut();

        let Some(mut flags) = MsgFlags::from_bits(args.flags) else {
            log::debug!("Unrecognized recv flags: {:#b}", args.flags);
            return Err(Errno::EINVAL.into());
        };

        if socket_ref.status().contains(FileStatus::NONBLOCK) {
            flags.insert(MsgFlags::MSG_DONTWAIT);
        }

        let len: libc::size_t = args.iovs.iter().map(|x| x.len).sum();

        // run in a closure so that an early return doesn't skip checking if we should block
        let result = (|| {
            // a temporary location to store the message and header if we popped them
            let message_storage;
            let header_storage;

            let (message, header) = if !flags.contains(MsgFlags::MSG_PEEK) {
                // pop the message from the receive buffer
                (message_storage, header_storage) = socket_ref
                    .recv_buffer
                    .pop_message()
                    .ok_or(Errno::EWOULDBLOCK)?;
                (&message_storage, &header_storage)
            } else {
                // peek the message from the receive buffer
                let (message, header) = socket_ref
                    .recv_buffer
                    .peek_message()
                    .ok_or(Errno::EWOULDBLOCK)?;
                (message, header)
            };

            // truncate the payload if the payload is larger than the user-provided buffers
            let truncated_message = &message[..std::cmp::min(len, message.len())];

            // write the truncated message to the iovs
            let mut writer = IoVecWriter::new(args.iovs, mem);
            writer
                .write_all(truncated_message)
                .map_err(|e| Errno::try_from(e).unwrap())?;

            let return_val = if flags.contains(MsgFlags::MSG_TRUNC) {
                message.len()
            } else {
                // the number of bytes written
                truncated_message.len()
            };

            let mut return_flags = MsgFlags::empty();
            return_flags.set(MsgFlags::MSG_TRUNC, truncated_message.len() < message.len());

            // update the cache of the last recv time
            socket_ref.recv_time_of_last_read_packet = Some(header.recv_time);

            Ok(RecvmsgReturn {
                return_val: return_val.try_into().unwrap(),
                addr: Some(header.src.into()),
                msg_flags: return_flags.bits(),
                control_len: 0,
            })
        })();

        socket_ref.refresh_readable_writable(FileSignals::empty(), cb_queue);

        // if the syscall would block and we don't have the MSG_DONTWAIT flag
        if result.as_ref().err() == Some(&Errno::EWOULDBLOCK)
            && !flags.contains(MsgFlags::MSG_DONTWAIT)
        {
            // if the syscall would block but the file's reading has been shut down, return EOF
            if socket_ref.shutdown_status.contains(ShutdownFlags::READ) {
                return Ok(RecvmsgReturn {
                    return_val: 0,
                    addr: None,
                    msg_flags: 0,
                    control_len: 0,
                });
            }

            return Err(SyscallError::new_blocked_on_file(
                File::Socket(Socket::Inet(InetSocket::Udp(socket.clone()))),
                FileState::READABLE,
                socket_ref.supports_sa_restart(),
            ));
        }

        Ok(result?)
    }

    pub fn ioctl(
        &mut self,
        request: IoctlRequest,
        arg_ptr: ForeignPtr<()>,
        mem: &mut MemoryManager,
    ) -> SyscallResult {
        match request {
            // equivalent to SIOCINQ
            IoctlRequest::FIONREAD => {
                let len = self
                    .recv_buffer
                    .peek_message()
                    .map(|m| m.0.len())
                    .unwrap_or(0)
                    .try_into()
                    .unwrap();

                let arg_ptr = arg_ptr.cast::<libc::c_int>();
                mem.write(arg_ptr, &len)?;

                Ok(0.into())
            }
            // equivalent to SIOCOUTQ
            IoctlRequest::TIOCOUTQ => {
                let len = self.send_buffer.len_bytes().try_into().unwrap();

                let arg_ptr = arg_ptr.cast::<libc::c_int>();
                mem.write(arg_ptr, &len)?;

                Ok(0.into())
            }
            IoctlRequest::SIOCGSTAMP => {
                // socket(7): "Return a struct timeval with the receive timestamp of the last packet
                // passed to the user. [...] This ioctl should only be used if the socket option
                // SO_TIMESTAMP is not set on the socket. Otherwise, it returns the timestamp of the
                // last packet that was received while SO_TIMESTAMP was not set, or it fails if no
                // such packet has been received, (i.e., ioctl(2) returns -1 with errno set to
                // ENOENT)."
                let Some(last_recv_time) = self.recv_time_of_last_read_packet else {
                    return Err(Errno::ENOENT.into());
                };

                let last_recv_time = (last_recv_time - EmulatedTime::UNIX_EPOCH)
                    .try_into()
                    .unwrap();

                let arg_ptr = arg_ptr.cast::<libc::timeval>();
                mem.write(arg_ptr, &last_recv_time)?;

                Ok(0.into())
            }
            IoctlRequest::FIONBIO => {
                panic!("This should have been handled by the ioctl syscall handler");
            }
            IoctlRequest::TCGETS
            | IoctlRequest::TCSETS
            | IoctlRequest::TCSETSW
            | IoctlRequest::TCSETSF
            | IoctlRequest::TCGETA
            | IoctlRequest::TCSETA
            | IoctlRequest::TCSETAW
            | IoctlRequest::TCSETAF
            | IoctlRequest::TIOCGWINSZ
            | IoctlRequest::TIOCSWINSZ => {
                // not a terminal
                Err(Errno::ENOTTY.into())
            }
            request => {
                warn_once_then_debug!(
                    "We do not yet handle ioctl request {request:?} on tcp sockets"
                );
                Err(Errno::EINVAL.into())
            }
        }
    }

    pub fn stat(&self) -> Result<linux_api::stat::stat, SyscallError> {
        warn_once_then_debug!("We do not yet handle stat calls on udp sockets");
        Err(Errno::EINVAL.into())
    }

    pub fn listen(
        _socket: &Arc<AtomicRefCell<Self>>,
        _backlog: i32,
        _net_ns: &NetworkNamespace,
        _rng: impl rand::Rng,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<(), Errno> {
        Err(Errno::EOPNOTSUPP)
    }

    pub fn connect(
        socket: &Arc<AtomicRefCell<Self>>,
        peer_addr: &SockaddrStorage,
        net_ns: &NetworkNamespace,
        rng: impl rand::Rng,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<(), SyscallError> {
        // if not an inet socket address
        // TODO: handle an AF_UNSPEC socket address
        let Some(peer_addr) = peer_addr.as_inet() else {
            return Err(Errno::EINVAL.into());
        };

        let mut peer_addr: std::net::SocketAddrV4 = (*peer_addr).into();

        // https://stackoverflow.com/a/22425796
        if peer_addr.ip().is_unspecified() {
            peer_addr.set_ip(std::net::Ipv4Addr::LOCALHOST);
        }

        // NOTE: it would be nice to use `Ipv4Addr::is_loopback` in this code rather than comparing
        // to `Ipv4Addr::LOCALHOST`, but the rest of Shadow probably can't handle other loopback
        // addresses (ex: 127.0.0.2) and it's probably best not to change this behaviour

        // make sure we will be able to route this later
        // TODO: UDP sockets probably shouldn't return `ECONNREFUSED`
        if peer_addr.ip() != &std::net::Ipv4Addr::LOCALHOST {
            let is_routable =
                Worker::is_routable(net_ns.default_ip.into(), (*peer_addr.ip()).into());

            if !is_routable {
                // can't route it - there is no node with this address
                log::warn!(
                    "Attempting to connect to address '{peer_addr}' for which no host exists"
                );
                return Err(Errno::ECONNREFUSED.into());
            }
        }

        // make sure that we're bound
        {
            let mut socket_ref = socket.borrow_mut();

            if let Some(bound_addr) = socket_ref.bound_addr {
                // we must have an association since we're bound
                assert!(socket_ref.association.is_some());

                // make sure the new peer address is connectable from the bound interface
                if !bound_addr.ip().is_unspecified() {
                    // assume that a socket bound to 0.0.0.0 can connect anywhere, so only check
                    // localhost
                    match (
                        bound_addr.ip() == &Ipv4Addr::LOCALHOST,
                        peer_addr.ip() == &Ipv4Addr::LOCALHOST,
                    ) {
                        // bound and peer on loopback interface
                        (true, true) => {}
                        // neither bound nor peer on loopback interface (shadow treats any
                        // non-127.0.0.1 address as an "internet" address)
                        (false, false) => {}
                        _ => return Err(Errno::EINVAL.into()),
                    }
                }
            } else {
                // we can't be unbound but have a peer
                assert!(socket_ref.peer_addr.is_none());
                assert!(socket_ref.association.is_none());

                // implicit bind (use default interface unless the remote peer is on loopback)
                let local_addr = if peer_addr.ip() == &std::net::Ipv4Addr::LOCALHOST {
                    SocketAddrV4::new(Ipv4Addr::LOCALHOST, 0)
                } else {
                    SocketAddrV4::new(net_ns.default_ip, 0)
                };

                // this will allow us to receive packets from any source address, but
                // `push_in_packet` should drop any packets that aren't from the peer
                let unspecified_addr = SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0);

                let (local_addr, handle) = super::associate_socket(
                    InetSocket::Udp(Arc::clone(socket)),
                    local_addr,
                    unspecified_addr,
                    /* check_generic_peer= */ true,
                    net_ns,
                    rng,
                )?;

                socket_ref.bound_addr = Some(local_addr);
                socket_ref.association = Some(handle);
            }

            socket_ref.peer_addr = Some(peer_addr);
        }

        Ok(())
    }

    pub fn accept(
        &mut self,
        _net_ns: &NetworkNamespace,
        _rng: impl rand::Rng,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<OpenFile, SyscallError> {
        Err(Errno::EOPNOTSUPP.into())
    }

    pub fn shutdown(
        &mut self,
        how: Shutdown,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<(), SyscallError> {
        // TODO: what if we set a peer, then unset the peer, then call shutdown?
        if self.peer_addr.is_none() {
            return Err(Errno::ENOTCONN.into());
        }

        if how == Shutdown::SHUT_WR || how == Shutdown::SHUT_RDWR {
            // writing has been shut down
            self.shutdown_status.insert(ShutdownFlags::WRITE)
        }

        if how == Shutdown::SHUT_RD || how == Shutdown::SHUT_RDWR {
            // reading has been shut down
            self.shutdown_status.insert(ShutdownFlags::READ)
        }

        Ok(())
    }

    pub fn getsockopt(
        &mut self,
        level: libc::c_int,
        optname: libc::c_int,
        optval_ptr: ForeignPtr<()>,
        optlen: libc::socklen_t,
        mem: &mut MemoryManager,
        _cb_queue: &mut CallbackQueue,
    ) -> Result<libc::socklen_t, SyscallError> {
        match (level, optname) {
            (libc::SOL_SOCKET, libc::SO_SNDBUF) => {
                let sndbuf_size = self.send_buffer.soft_limit_bytes().try_into().unwrap();

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &sndbuf_size, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_RCVBUF) => {
                let rcvbuf_size = self.recv_buffer.soft_limit_bytes().try_into().unwrap();

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &rcvbuf_size, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_ERROR) => {
                let error = 0;

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &error, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_DOMAIN) => {
                let domain = libc::AF_INET;

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &domain, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_TYPE) => {
                let sock_type = libc::SOCK_DGRAM;

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &sock_type, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_PROTOCOL) => {
                let protocol = libc::IPPROTO_UDP;

                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &protocol, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, libc::SO_ACCEPTCONN) => {
                let optval_ptr = optval_ptr.cast::<libc::c_int>();
                let bytes_written = write_partial(mem, &0, optval_ptr, optlen as usize)?;

                Ok(bytes_written as libc::socklen_t)
            }
            (libc::SOL_SOCKET, _) => {
                log_once_per_value_at_level!(
                    (level, optname),
                    (i32, i32),
                    log::Level::Warn,
                    log::Level::Debug,
                    "getsockopt called with unsupported level {level} and opt {optname}"
                );
                Err(Errno::ENOPROTOOPT.into())
            }
            _ => {
                log_once_per_value_at_level!(
                    (level, optname),
                    (i32, i32),
                    log::Level::Warn,
                    log::Level::Debug,
                    "getsockopt called with unsupported level {level} and opt {optname}"
                );
                Err(Errno::EOPNOTSUPP.into())
            }
        }
    }

    pub fn setsockopt(
        &mut self,
        level: libc::c_int,
        optname: libc::c_int,
        optval_ptr: ForeignPtr<()>,
        optlen: libc::socklen_t,
        mem: &MemoryManager,
    ) -> Result<(), SyscallError> {
        match (level, optname) {
            (libc::SOL_SOCKET, libc::SO_SNDBUF) => {
                type OptType = libc::c_int;

                if usize::try_from(optlen).unwrap() < std::mem::size_of::<OptType>() {
                    return Err(Errno::EINVAL.into());
                }

                let optval_ptr = optval_ptr.cast::<OptType>();
                let val: u64 = mem.read(optval_ptr)?.try_into().or(Err(Errno::EINVAL))?;

                // linux kernel doubles this value upon setting
                let val = val * 2;

                // Linux also has limits SOCK_MIN_SNDBUF (slightly greater than 4096) and the sysctl
                // max limit. We choose a reasonable lower limit for Shadow. The minimum limit in
                // man 7 socket is incorrect.
                let val = std::cmp::max(val, 4096);

                // This upper limit was added as an arbitrarily high number so that we don't change
                // Shadow's behaviour, but also prevents an application from setting this to
                // something unnecessarily large like INT_MAX.
                let val = std::cmp::min(val, 268435456); // 2^28 = 256 MiB

                self.send_buffer
                    .set_soft_limit_bytes(val.try_into().unwrap());
            }
            (libc::SOL_SOCKET, libc::SO_RCVBUF) => {
                type OptType = libc::c_int;

                if usize::try_from(optlen).unwrap() < std::mem::size_of::<OptType>() {
                    return Err(Errno::EINVAL.into());
                }

                let optval_ptr = optval_ptr.cast::<OptType>();
                let val: u64 = mem.read(optval_ptr)?.try_into().or(Err(Errno::EINVAL))?;

                // linux kernel doubles this value upon setting
                let val = val * 2;

                // Linux also has limits SOCK_MIN_RCVBUF (slightly greater than 2048) and the sysctl
                // max limit. We choose a reasonable lower limit for Shadow. The minimum limit in
                // man 7 socket is incorrect.
                let val = std::cmp::max(val, 2048);

                // This upper limit was added as an arbitrarily high number so that we don't change
                // Shadow's behaviour, but also prevents an application from setting this to
                // something unnecessarily large like INT_MAX.
                let val = std::cmp::min(val, 268435456); // 2^28 = 256 MiB

                self.recv_buffer
                    .set_soft_limit_bytes(val.try_into().unwrap());
            }
            (libc::SOL_SOCKET, libc::SO_REUSEADDR) => {
                // TODO: implement this
                warn_once_then_debug!("setsockopt SO_REUSEADDR not yet implemented for udp");
                return Err(Errno::ENOPROTOOPT.into());
            }
            (libc::SOL_SOCKET, libc::SO_REUSEPORT) => {
                // TODO: implement this
                warn_once_then_debug!("setsockopt SO_REUSEPORT not yet implemented for udp");
                return Err(Errno::ENOPROTOOPT.into());
            }
            (libc::SOL_SOCKET, libc::SO_KEEPALIVE) => {
                // TODO: implement this
                warn_once_then_debug!("setsockopt SO_KEEPALIVE not yet implemented for udp");
                return Err(Errno::ENOPROTOOPT.into());
            }
            (libc::SOL_SOCKET, libc::SO_BROADCAST) => {
                // TODO: implement this, pkg.go.dev/net uses it
                warn_once_then_debug!(
                    "setsockopt SO_BROADCAST not yet implemented for udp; ignoring and returning 0"
                );
            }
            _ => {
                log_once_per_value_at_level!(
                    (level, optname),
                    (i32, i32),
                    log::Level::Warn,
                    log::Level::Debug,
                    "setsockopt called with unsupported level {level} and opt {optname}"
                );
                return Err(Errno::ENOPROTOOPT.into());
            }
        }

        Ok(())
    }

    pub fn add_listener(
        &mut self,
        monitoring_state: FileState,
        monitoring_signals: FileSignals,
        filter: StateListenerFilter,
        notify_fn: impl Fn(FileState, FileState, FileSignals, &mut CallbackQueue)
            + Send
            + Sync
            + 'static,
    ) -> StateListenHandle {
        self.event_source
            .add_listener(monitoring_state, monitoring_signals, filter, notify_fn)
    }

    pub fn add_legacy_listener(&mut self, ptr: HostTreePointer<c::StatusListener>) {
        self.event_source.add_legacy_listener(ptr);
    }

    pub fn remove_legacy_listener(&mut self, ptr: *mut c::StatusListener) {
        self.event_source.remove_legacy_listener(ptr);
    }

    pub fn state(&self) -> FileState {
        self.state
    }

    fn refresh_readable_writable(&mut self, signals: FileSignals, cb_queue: &mut CallbackQueue) {
        let readable = !self.recv_buffer.is_empty();
        let writable = self.send_buffer.has_space();

        let readable = readable.then_some(FileState::READABLE).unwrap_or_default();
        let writable = writable.then_some(FileState::WRITABLE).unwrap_or_default();

        self.update_state(
            /* mask= */ FileState::READABLE | FileState::WRITABLE,
            readable | writable,
            signals,
            cb_queue,
        );
    }

    fn update_state(
        &mut self,
        mask: FileState,
        state: FileState,
        signals: FileSignals,
        cb_queue: &mut CallbackQueue,
    ) {
        let old_state = self.state;

        // remove the masked flags, then copy the masked flags
        self.state.remove(mask);
        self.state.insert(state & mask);

        self.handle_state_change(old_state, signals, cb_queue);
    }

    fn handle_state_change(
        &mut self,
        old_state: FileState,
        signals: FileSignals,
        cb_queue: &mut CallbackQueue,
    ) {
        let states_changed = self.state ^ old_state;

        // if nothing changed
        if states_changed.is_empty() && signals.is_empty() {
            return;
        }

        self.event_source
            .notify_listeners(self.state, states_changed, signals, cb_queue);
    }
}

/// Non-payload data for a message in the send buffer.
#[derive(Debug)]
struct MessageSendHeader {
    /// The source address (typically the bind address). The application can theoretically use
    /// `IP_PKTINFO` to set a per-message source address.
    src: SocketAddrV4,
    /// The destination address (for example the peer).
    dst: SocketAddrV4,
    /// The priority for the packet that we'll create in the future, given to us by the host.
    packet_priority: FifoPacketPriority,
}

/// Non-payload data for a message in the receive buffer.
#[derive(Debug)]
struct MessageRecvHeader {
    /// The source address (for example the peer).
    src: SocketAddrV4,
    /// The destination address (typically the bind address). The application can theoretically use
    /// `IP_PKTINFO` to get the packet destination address.
    #[allow(dead_code)]
    dst: SocketAddrV4,
    /// The time when the network interface received the message.
    recv_time: EmulatedTime,
}

/// A buffer of UDP messages and message headers.
#[derive(Debug)]
struct MessageBuffer<Hdr> {
    /// The message payloads and headers.
    // use a `LinkedList` so that socket buffers can shrink when they're empty (as opposed to
    // `VecDeque`)
    buffer: LinkedList<(Bytes, Hdr)>,
    /// The number of payload bytes in this socket.
    len_bytes: usize,
    /// A soft limit for the maximum number of payload bytes this buffer can hold.
    soft_limit_bytes: usize,
}

impl<Hdr> MessageBuffer<Hdr> {
    pub fn new(soft_limit_bytes: usize) -> Self {
        Self {
            buffer: std::collections::LinkedList::new(),
            len_bytes: 0,
            soft_limit_bytes,
        }
    }

    /// Push a message to the buffer. Returns the message and header as an `Err` if there wasn't
    /// enough space.
    pub fn push_message(&mut self, message: Bytes, header: Hdr) -> Result<(), (Bytes, Hdr)> {
        // TODO: i think udp allows at most one packet to exceed the buffer capacity; should confirm
        // this
        if !self.has_space() {
            return Err((message, header));
        }

        // TODO: on linux the socket buffer length also takes into account any header and struct
        // overhead, otherwise the buffer would take an infinite amount of 0-len packets
        self.len_bytes += message.len();
        self.buffer.push_back((message, header));

        Ok(())
    }

    /// Pop the next message from the buffer. Returns a tuple of the message bytes and message
    /// header.
    pub fn pop_message(&mut self) -> Option<(Bytes, Hdr)> {
        let (message, header) = self.buffer.pop_front()?;
        self.len_bytes -= message.len();

        Some((message, header))
    }

    /// Peek the next message in the buffer.
    pub fn peek_message(&self) -> Option<&(Bytes, Hdr)> {
        self.buffer.front()
    }

    /// The number of payload bytes contained in the buffer. A length of 0 does not mean that the
    /// buffer is empty.
    pub fn len_bytes(&self) -> usize {
        self.len_bytes
    }

    /// Is there space for at least one more packet?
    pub fn has_space(&self) -> bool {
        self.len_bytes < self.soft_limit_bytes
    }

    /// Is the buffer empty (does it have 0 packets)?
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }

    /// The soft limit for the size of the buffer.
    pub fn soft_limit_bytes(&self) -> usize {
        self.soft_limit_bytes
    }

    /// Set the soft limit for the size of the buffer.
    pub fn set_soft_limit_bytes(&mut self, soft_limit_bytes: usize) {
        self.soft_limit_bytes = soft_limit_bytes;
    }
}