scheduler/pools/
bounded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
// When comparing a loaded value that happens to be bool,
// assert_eq! reads better than assert!.
#![allow(clippy::bool_assert_comparison)]

use std::marker::PhantomData;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Arc;

use atomic_refcell::AtomicRefCell;

use crate::logical_processor::LogicalProcessors;
use crate::sync::count_down_latch::{build_count_down_latch, LatchCounter, LatchWaiter};
use crate::sync::thread_parking::{ThreadUnparker, ThreadUnparkerUnassigned};

// If making substantial changes to this scheduler, you should verify the compilation error message
// for each test at the end of this file to make sure that they correctly cause the expected
// compilation error. This work pool unsafely transmutes the task closure lifetime, and the
// commented tests are meant to make sure that the work pool does not allow unsound code to compile.
// Due to lifetime sub-typing/variance, rust will sometimes allow closures with shorter or longer
// lifetimes than we specify in the API, so the tests check to make sure the closures are invariant
// over the lifetime and that the usage is sound.

/// Context information provided to each task closure.
pub struct TaskData {
    pub thread_idx: usize,
    pub processor_idx: usize,
    pub cpu_id: Option<u32>,
}

/// A task that is run by the pool threads.
trait TaskFn: Fn(&TaskData) + Send + Sync {}
impl<T> TaskFn for T where T: Fn(&TaskData) + Send + Sync {}

/// A thread pool that runs a task on many threads. A task will run once on each thread. Each
/// logical processor will run threads sequentially, meaning that the thread pool's parallelism
/// depends on the number of processors, not the number of threads. Threads are assigned to logical
/// processors, which can be bound to operating system processors.
pub struct ParallelismBoundedThreadPool {
    /// Handles for joining threads when they've exited.
    thread_handles: Vec<std::thread::JoinHandle<()>>,
    /// State shared between all threads.
    shared_state: Arc<SharedState>,
    /// The main thread uses this to wait for the threads to finish running the task.
    task_end_waiter: LatchWaiter,
}

pub struct SharedState {
    /// The task to run during the next round.
    task: AtomicRefCell<Option<Box<dyn TaskFn>>>,
    /// Has a thread panicked?
    has_thread_panicked: AtomicBool,
    /// The logical processors.
    logical_processors: AtomicRefCell<LogicalProcessors>,
    /// The threads which run on logical processors.
    threads: Vec<ThreadScheduling>,
}

/// Scheduling state for a thread.
pub struct ThreadScheduling {
    /// Used to unpark the thread when it has a new task.
    unparker: ThreadUnparker,
    /// The OS pid for this thread. This will have an invalid value when running under miri.
    #[cfg_attr(miri, allow(dead_code))]
    tid: nix::unistd::Pid,
    /// The logical processor index that this thread is assigned to.
    logical_processor_idx: AtomicUsize,
}

impl ParallelismBoundedThreadPool {
    /// A new work pool with logical processors that are pinned to the provided OS processors.
    /// Each logical processor is assigned many threads.
    pub fn new(cpu_ids: &[Option<u32>], num_threads: usize, thread_name: &str) -> Self {
        // we don't need more logical processors than threads
        let cpu_ids = &cpu_ids[..std::cmp::min(cpu_ids.len(), num_threads)];

        let logical_processors = LogicalProcessors::new(cpu_ids, num_threads);

        let (task_end_counter, task_end_waiter) = build_count_down_latch();

        let mut thread_handles = Vec::new();
        let mut shared_state_senders = Vec::new();
        let mut tids = Vec::new();

        // start the threads
        for i in 0..num_threads {
            // the thread will send us the tid, then we'll later send the shared state to the thread
            let (tid_send, tid_recv) = crossbeam::channel::bounded(1);
            let (shared_state_send, shared_state_recv) = crossbeam::channel::bounded(1);

            let task_end_counter_clone = task_end_counter.clone();

            let handle = std::thread::Builder::new()
                .name(thread_name.to_string())
                .spawn(move || work_loop(i, tid_send, shared_state_recv, task_end_counter_clone))
                .unwrap();

            thread_handles.push(handle);
            shared_state_senders.push(shared_state_send);
            tids.push(tid_recv.recv().unwrap());
        }

        // build the scheduling data for the threads
        let thread_data: Vec<ThreadScheduling> = logical_processors
            .iter()
            .cycle()
            .zip(&tids)
            .zip(&thread_handles)
            .map(|((processor_idx, tid), handle)| ThreadScheduling {
                unparker: ThreadUnparkerUnassigned::new().assign(handle.thread().clone()),
                tid: *tid,
                logical_processor_idx: AtomicUsize::new(processor_idx),
            })
            .collect();

        // add each thread to its logical processor
        for (thread_idx, thread) in thread_data.iter().enumerate() {
            let logical_processor_idx = thread.logical_processor_idx.load(Ordering::Relaxed);
            logical_processors.add_worker(logical_processor_idx, thread_idx);
        }

        // state shared between all threads
        let shared_state = Arc::new(SharedState {
            task: AtomicRefCell::new(None),
            has_thread_panicked: AtomicBool::new(false),
            logical_processors: AtomicRefCell::new(logical_processors),
            threads: thread_data,
        });

        // send the shared state to each thread
        for s in shared_state_senders.into_iter() {
            s.send(Arc::clone(&shared_state)).unwrap();
        }

        Self {
            thread_handles,
            shared_state,
            task_end_waiter,
        }
    }

    /// The total number of logical processors.
    pub fn num_processors(&self) -> usize {
        self.shared_state.logical_processors.borrow().iter().len()
    }

    /// The total number of threads.
    pub fn num_threads(&self) -> usize {
        self.thread_handles.len()
    }

    /// Stop and join the threads.
    pub fn join(self) {
        // the drop handler will join the threads
    }

    fn join_internal(&mut self) {
        // a `None` indicates that the threads should end
        assert!(self.shared_state.task.borrow().is_none());

        // only check the thread join return value if no threads have yet panicked
        let check_for_errors = !self
            .shared_state
            .has_thread_panicked
            .load(Ordering::Relaxed);

        // send the sentinel task to all threads
        for thread in &self.shared_state.threads {
            thread.unparker.unpark();
        }

        for handle in self.thread_handles.drain(..) {
            let result = handle.join();
            if check_for_errors {
                result.expect("A thread panicked while stopping");
            }
        }
    }

    /// Create a new scope for the pool. The scope will ensure that any task run on the pool within
    /// this scope has completed before leaving the scope.
    //
    // SAFETY: This works because:
    //
    // 1. WorkerScope<'scope> is covariant over 'scope.
    // 2. TaskRunner<'a, 'scope> is invariant over WorkerScope<'scope>, so TaskRunner<'a, 'scope>
    //    is invariant over 'scope.
    // 3. FnOnce(TaskRunner<'a, 'scope>) is contravariant over TaskRunner<'a, 'scope>, so
    //    FnOnce(TaskRunner<'a, 'scope>) is invariant over 'scope.
    //
    // This means that the provided scope closure cannot take a TaskRunner<'a, 'scope2> where
    // 'scope2 is shorter than 'scope, and therefore 'scope must be as long as this function call.
    //
    // If TaskRunner<'a, 'scope> was covariant over 'scope, then FnOnce(TaskRunner<'a, 'scope>)
    // would have been contravariant over 'scope. This would have allowed the user to provide a
    // scope closure that could take a TaskRunner<'a, 'scope2> where 'scope2 is shorter than 'scope.
    // Then when TaskRunner<'a, 'scope2>::run(...) would eventually be called, the run closure would
    // capture data with a lifetime of only 'scope2, which would be a shorter lifetime than the
    // scope closure's lifetime of 'scope. Then, any captured mutable references would be accessible
    // from both the run closure and the scope closure, leading to mutable aliasing.
    pub fn scope<'scope>(
        &'scope mut self,
        f: impl for<'a> FnOnce(TaskRunner<'a, 'scope>) + 'scope,
    ) {
        assert!(
            !self
                .shared_state
                .has_thread_panicked
                .load(Ordering::Relaxed),
            "Attempting to use a workpool that previously panicked"
        );

        // makes sure that the task is properly cleared even if 'f' panics
        let mut scope = WorkerScope::<'scope> {
            pool: self,
            _phantom: Default::default(),
        };

        let runner = TaskRunner { scope: &mut scope };

        f(runner);
    }
}

impl std::ops::Drop for ParallelismBoundedThreadPool {
    fn drop(&mut self) {
        self.join_internal();
    }
}

struct WorkerScope<'scope> {
    pool: &'scope mut ParallelismBoundedThreadPool,
    // when we are dropped, it's like dropping the task
    _phantom: PhantomData<Box<dyn TaskFn + 'scope>>,
}

impl std::ops::Drop for WorkerScope<'_> {
    fn drop(&mut self) {
        // if the task was set (if `TaskRunner::run` was called)
        if self.pool.shared_state.task.borrow().is_some() {
            // wait for the task to complete
            self.pool.task_end_waiter.wait();

            // clear the task
            *self.pool.shared_state.task.borrow_mut() = None;

            // we should have run every thread, so swap the logical processors' internal queues
            self.pool
                .shared_state
                .logical_processors
                .borrow_mut()
                .reset();

            // generally following https://docs.rs/rayon/latest/rayon/fn.scope.html#panics
            if self
                .pool
                .shared_state
                .has_thread_panicked
                .load(Ordering::Relaxed)
            {
                // we could store the thread's panic message and propagate it, but I don't think
                // that's worth handling
                panic!("A work thread panicked");
            }
        }
    }
}

/// Allows a single task to run per pool scope.
pub struct TaskRunner<'a, 'scope> {
    // SAFETY: Self must be invariant over 'scope, which is why we use &mut here. See the
    // documentation for scope() above for details.
    scope: &'a mut WorkerScope<'scope>,
}

impl<'scope> TaskRunner<'_, 'scope> {
    /// Run a task on the pool's threads.
    // unfortunately we need to use `Fn(&TaskData) + Send + Sync` and not `TaskFn` here, otherwise
    // rust's type inference doesn't work nicely in the calling code
    pub fn run(self, f: impl Fn(&TaskData) + Send + Sync + 'scope) {
        let f = Box::new(f);

        // SAFETY: WorkerScope will drop this TaskFn before the end of 'scope
        let f = unsafe {
            std::mem::transmute::<Box<dyn TaskFn + 'scope>, Box<dyn TaskFn + 'static>>(f)
        };

        *self.scope.pool.shared_state.task.borrow_mut() = Some(f);

        let logical_processors = self.scope.pool.shared_state.logical_processors.borrow();

        // start the first thread for each logical processor
        for processor_idx in logical_processors.iter() {
            start_next_thread(
                processor_idx,
                &self.scope.pool.shared_state,
                &logical_processors,
            );
        }
    }
}

fn work_loop(
    thread_idx: usize,
    tid_send: crossbeam::channel::Sender<nix::unistd::Pid>,
    shared_state_recv: crossbeam::channel::Receiver<Arc<SharedState>>,
    mut end_counter: LatchCounter,
) {
    // we don't use `catch_unwind` here for two main reasons:
    //
    // 1. `catch_unwind` requires that the closure is `UnwindSafe`, which means that `TaskFn` also
    // needs to be `UnwindSafe`. This is a big restriction on the types of tasks that we could run,
    // since it requires that there's no interior mutability in the closure. rayon seems to get
    // around this by wrapping the closure in `AssertUnwindSafe`, under the assumption that the
    // panic will be propagated later with `resume_unwinding`, but this is a little more difficult
    // to reason about compared to simply avoiding `catch_unwind` altogether.
    // https://github.com/rayon-rs/rayon/blob/c571f8ffb4f74c8c09b4e1e6d9979b71b4414d07/rayon-core/src/unwind.rs#L9
    //
    // 2. There is a footgun with `catch_unwind` that could cause unexpected behaviour. If the
    // closure called `panic_any()` with a type that has a Drop implementation, and that Drop
    // implementation panics, it will cause a panic that is not caught by the `catch_unwind`,
    // causing the thread to panic again with no chance to clean up properly. The work pool would
    // then deadlock. Since we don't use `catch_unwind`, the thread will instead "panic when
    // panicking" and abort, which is a more ideal outcome.
    // https://github.com/rust-lang/rust/issues/86027

    // this will poison the workpool when it's dropped
    struct PoisonWhenDropped<'a>(&'a SharedState);

    impl std::ops::Drop for PoisonWhenDropped<'_> {
        fn drop(&mut self) {
            // if we panicked, then inform other threads that we panicked and allow them to exit
            // gracefully
            self.0.has_thread_panicked.store(true, Ordering::Relaxed);
        }
    }

    // this will start the next thread when it's dropped
    struct StartNextThreadOnDrop<'a> {
        shared_state: &'a SharedState,
        logical_processors: &'a LogicalProcessors,
        current_processor_idx: usize,
    }

    impl std::ops::Drop for StartNextThreadOnDrop<'_> {
        fn drop(&mut self) {
            start_next_thread(
                self.current_processor_idx,
                self.shared_state,
                self.logical_processors,
            );
        }
    }

    let tid = if cfg!(not(miri)) {
        nix::unistd::gettid()
    } else {
        // the sched_setaffinity() should be disabled under miri, so this should be fine
        nix::unistd::Pid::from_raw(-1)
    };

    // send this thread's tid to the main thread
    tid_send.send(tid).unwrap();

    // get the shared state
    let shared_state = shared_state_recv.recv().unwrap();
    let shared_state = shared_state.as_ref();

    let poison_when_dropped = PoisonWhenDropped(shared_state);

    let thread_data = &shared_state.threads[thread_idx];
    let thread_parker = thread_data.unparker.parker();

    loop {
        // wait for a new task
        thread_parker.park();

        // scope used to make sure we drop everything (including the task) before counting down
        {
            let logical_processors = &shared_state.logical_processors.borrow();

            // the logical processor for this thread may have been changed by the previous thread if
            // the thread was stolen from another logical processor
            let current_processor_idx = thread_data.logical_processor_idx.load(Ordering::Relaxed);

            // this will start the next thread even if the below task panics or we break from the
            // loop
            //
            // we must start the next thread before we count down, otherwise we'll have runtime
            // panics due to simultaneous exclusive and shared borrows of `logical_processors`
            let _start_next_thread_when_dropped = StartNextThreadOnDrop {
                shared_state,
                logical_processors,
                current_processor_idx,
            };

            // context information for the task
            let task_data = TaskData {
                thread_idx,
                processor_idx: current_processor_idx,
                cpu_id: logical_processors.cpu_id(current_processor_idx),
            };

            // run the task
            match shared_state.task.borrow().deref() {
                Some(task) => (task)(&task_data),
                None => {
                    // received the sentinel value
                    break;
                }
            };
        }

        // SAFETY: we do not hold any references/borrows to the task at this time
        end_counter.count_down();
    }

    // didn't panic, so forget the poison handler and return normally
    std::mem::forget(poison_when_dropped);
}

/// Choose the next thread to run on the logical processor, and then start it.
fn start_next_thread(
    processor_idx: usize,
    shared_state: &SharedState,
    logical_processors: &LogicalProcessors,
) {
    // if there is a thread to run on this logical processor, then start it
    if let Some((next_thread_idx, from_processor_idx)) =
        logical_processors.next_worker(processor_idx)
    {
        let next_thread = &shared_state.threads[next_thread_idx];

        debug_assert_eq!(
            from_processor_idx,
            next_thread.logical_processor_idx.load(Ordering::Relaxed)
        );

        // if the next thread is assigned to a different processor
        if processor_idx != from_processor_idx {
            assign_to_processor(next_thread, processor_idx, logical_processors);
        }

        // start the thread
        next_thread.unparker.unpark();
    }
}

/// Assigns the thread to the logical processor.
fn assign_to_processor(
    thread: &ThreadScheduling,
    processor_idx: usize,
    logical_processors: &LogicalProcessors,
) {
    // set thread's affinity if the logical processor has a cpu ID
    if let Some(cpu_id) = logical_processors.cpu_id(processor_idx) {
        let mut cpus = nix::sched::CpuSet::new();
        cpus.set(cpu_id as usize).unwrap();

        // only set the affinity if not running in miri
        #[cfg(not(miri))]
        nix::sched::sched_setaffinity(thread.tid, &cpus).unwrap();
    }

    // set thread's processor
    thread
        .logical_processor_idx
        .store(processor_idx, Ordering::Release);
}

#[cfg(any(test, doctest))]
mod tests {
    use std::sync::atomic::{AtomicBool, AtomicU32};

    use super::*;

    #[test]
    fn test_scope() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");

        let mut counter = 0u32;
        for _ in 0..3 {
            pool.scope(|_| {
                counter += 1;
            });
        }

        assert_eq!(counter, 3);
    }

    #[test]
    fn test_run() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");

        let counter = AtomicU32::new(0);
        for _ in 0..3 {
            pool.scope(|s| {
                s.run(|_| {
                    counter.fetch_add(1, Ordering::SeqCst);
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 12);
    }

    #[test]
    fn test_pinning() {
        let mut pool = ParallelismBoundedThreadPool::new(&[Some(0), Some(1)], 4, "worker");

        let counter = AtomicU32::new(0);
        for _ in 0..3 {
            pool.scope(|s| {
                s.run(|_| {
                    counter.fetch_add(1, Ordering::SeqCst);
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 12);
    }

    #[test]
    fn test_large_parallelism() {
        let mut pool = ParallelismBoundedThreadPool::new(&vec![None; 100], 4, "worker");

        let counter = AtomicU32::new(0);
        for _ in 0..3 {
            pool.scope(|s| {
                s.run(|_| {
                    counter.fetch_add(1, Ordering::SeqCst);
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 12);
    }

    #[test]
    fn test_large_num_threads() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 100, "worker");

        let counter = AtomicU32::new(0);
        for _ in 0..3 {
            pool.scope(|s| {
                s.run(|_| {
                    counter.fetch_add(1, Ordering::SeqCst);
                });
            });
        }

        assert_eq!(counter.load(Ordering::SeqCst), 300);
    }

    #[test]
    fn test_scope_runner_order() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None], 1, "worker");

        let flag = AtomicBool::new(false);
        pool.scope(|s| {
            s.run(|_| {
                std::thread::sleep(std::time::Duration::from_millis(10));
                flag.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
                    .unwrap();
            });
            assert_eq!(flag.load(Ordering::SeqCst), false);
        });

        assert_eq!(flag.load(Ordering::SeqCst), true);
    }

    #[test]
    fn test_non_aliasing_borrows() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");

        let mut counter = 0;
        pool.scope(|s| {
            counter += 1;
            s.run(|_| {
                let _x = counter;
            });
        });

        assert_eq!(counter, 1);
    }

    // should not compile: "cannot assign to `counter` because it is borrowed"
    /// ```compile_fail
    /// # use shadow_rs::core::scheduler::pools::bounded::*;
    /// let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");
    ///
    /// let mut counter = 0;
    /// pool.scope(|s| {
    ///     s.run(|_| {
    ///         let _x = counter;
    ///     });
    ///     counter += 1;
    /// });
    ///
    /// assert_eq!(counter, 1);
    /// ```
    fn _test_aliasing_borrows() {}

    #[test]
    #[should_panic]
    fn test_panic_all() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");

        pool.scope(|s| {
            s.run(|t| {
                // all threads panic
                panic!("{}", t.thread_idx);
            });
        });
    }

    #[test]
    #[should_panic]
    fn test_panic_single() {
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");

        pool.scope(|s| {
            s.run(|t| {
                // one thread panics
                if t.thread_idx == 2 {
                    panic!("{}", t.thread_idx);
                }
            });
        });
    }

    // should not compile: "`x` does not live long enough"
    /// ```compile_fail
    /// # use shadow_rs::core::scheduler::pools::bounded::*;
    /// let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");
    ///
    /// let x = 5;
    /// pool.scope(|s| {
    ///     s.run(|_| {
    ///         std::panic::panic_any(&x);
    ///     });
    /// });
    /// ```
    fn _test_panic_any() {}

    // should not compile: "closure may outlive the current function, but it borrows `x`, which is
    // owned by the current function"
    /// ```compile_fail
    /// # use shadow_rs::core::scheduler::pools::bounded::*;
    /// let mut pool = ParallelismBoundedThreadPool::new(&[None, None], 4, "worker");
    ///
    /// pool.scope(|s| {
    ///     // 'x' will be dropped when the closure is dropped, but 's' lives longer than that
    ///     let x = 5;
    ///     s.run(|_| {
    ///         let _x = x;
    ///     });
    /// });
    /// ```
    fn _test_scope_lifetime() {}

    #[test]
    fn test_queues() {
        let num_threads = 4;
        let mut pool = ParallelismBoundedThreadPool::new(&[None, None], num_threads, "worker");

        // a non-copy usize wrapper
        struct Wrapper(usize);

        let queues: Vec<_> = (0..num_threads)
            .map(|_| crossbeam::queue::SegQueue::<Wrapper>::new())
            .collect();

        // queues[0] has Wrapper(0), queues[1] has Wrapper(1), etc
        for (i, queue) in queues.iter().enumerate() {
            queue.push(Wrapper(i));
        }

        let num_iters = 3;
        for _ in 0..num_iters {
            pool.scope(|s| {
                s.run(|t| {
                    // take item from queue n and push it to queue n+1
                    let wrapper = queues[t.thread_idx].pop().unwrap();
                    queues[(t.thread_idx + 1) % num_threads].push(wrapper);
                });
            });
        }

        for (i, queue) in queues.iter().enumerate() {
            assert_eq!(
                queue.pop().unwrap().0,
                i.wrapping_sub(num_iters) % num_threads
            );
        }
    }
}