cfg_expr/
expr.rs

1pub mod lexer;
2mod parser;
3
4use smallvec::SmallVec;
5use std::ops::Range;
6
7/// A predicate function, used to combine 1 or more predicates
8/// into a single value
9#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
10pub enum Func {
11    /// `not()` with a configuration predicate. It is true if its predicate
12    /// is false and false if its predicate is true.
13    Not,
14    /// `all()` with a comma separated list of configuration predicates. It
15    /// is false if at least one predicate is false. If there are no predicates,
16    /// it is true.
17    ///
18    /// The associated `usize` is the number of predicates inside the `all()`.
19    All(usize),
20    /// `any()` with a comma separated list of configuration predicates. It
21    /// is true if at least one predicate is true. If there are no predicates,
22    /// it is false.
23    ///
24    /// The associated `usize` is the number of predicates inside the `any()`.
25    Any(usize),
26}
27
28use crate::targets as targ;
29
30/// All predicates that pertains to a target, except for `target_feature`
31#[derive(Clone, PartialEq, Eq, Debug)]
32pub enum TargetPredicate {
33    /// [target_abi](https://github.com/rust-lang/rust/issues/80970)
34    Abi(targ::Abi),
35    /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
36    Arch(targ::Arch),
37    /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
38    Endian(targ::Endian),
39    /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
40    Env(targ::Env),
41    /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
42    /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
43    /// predicates.
44    Family(targ::Family),
45    /// [target_has_atomic](https://doc.rust-lang.org/reference/conditional-compilation.html#target_has_atomic).
46    HasAtomic(targ::HasAtomic),
47    /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
48    Os(targ::Os),
49    /// [panic](https://doc.rust-lang.org/reference/conditional-compilation.html#panic)
50    Panic(targ::Panic),
51    /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
52    PointerWidth(u8),
53    /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
54    Vendor(targ::Vendor),
55}
56
57pub trait TargetMatcher {
58    fn matches(&self, tp: &TargetPredicate) -> bool;
59}
60
61impl TargetMatcher for targ::TargetInfo {
62    fn matches(&self, tp: &TargetPredicate) -> bool {
63        use TargetPredicate::{
64            Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
65        };
66
67        match tp {
68            // The ABI is allowed to be an empty string
69            Abi(abi) => match &self.abi {
70                Some(a) => abi == a,
71                None => abi.0.is_empty(),
72            },
73            Arch(a) => a == &self.arch,
74            Endian(end) => *end == self.endian,
75            // The environment is allowed to be an empty string
76            Env(env) => match &self.env {
77                Some(e) => env == e,
78                None => env.0.is_empty(),
79            },
80            Family(fam) => self.families.contains(fam),
81            HasAtomic(has_atomic) => self.has_atomics.contains(*has_atomic),
82            Os(os) => match &self.os {
83                Some(self_os) => os == self_os,
84                // os = "none" means it should be matched against None. Note that this is different
85                // from "env" above.
86                None => os.as_str() == "none",
87            },
88            PointerWidth(w) => *w == self.pointer_width,
89            Vendor(ven) => match &self.vendor {
90                Some(v) => ven == v,
91                None => ven == &targ::Vendor::unknown,
92            },
93            Panic(panic) => &self.panic == panic,
94        }
95    }
96}
97
98#[cfg(feature = "targets")]
99impl TargetMatcher for target_lexicon::Triple {
100    #[allow(clippy::cognitive_complexity)]
101    #[allow(clippy::match_same_arms)]
102    fn matches(&self, tp: &TargetPredicate) -> bool {
103        use target_lexicon::*;
104        use TargetPredicate::{
105            Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
106        };
107
108        match tp {
109            Abi(_) => {
110                // `target_abi` is unstable. Assume false for this.
111                false
112            }
113            Arch(arch) => {
114                if arch == &targ::Arch::x86 {
115                    matches!(self.architecture, Architecture::X86_32(_))
116                } else if arch == &targ::Arch::wasm32 {
117                    self.architecture == Architecture::Wasm32
118                        || self.architecture == Architecture::Asmjs
119                } else if arch == &targ::Arch::arm {
120                    matches!(self.architecture, Architecture::Arm(_))
121                } else if arch == &targ::Arch::bpf {
122                    self.architecture == Architecture::Bpfeb
123                        || self.architecture == Architecture::Bpfel
124                } else if arch == &targ::Arch::x86_64 {
125                    self.architecture == Architecture::X86_64
126                        || self.architecture == Architecture::X86_64h
127                } else if arch == &targ::Arch::mips32r6 {
128                    matches!(
129                        self.architecture,
130                        Architecture::Mips32(
131                            Mips32Architecture::Mipsisa32r6 | Mips32Architecture::Mipsisa32r6el
132                        )
133                    )
134                } else if arch == &targ::Arch::mips64r6 {
135                    matches!(
136                        self.architecture,
137                        Architecture::Mips64(
138                            Mips64Architecture::Mipsisa64r6 | Mips64Architecture::Mipsisa64r6el
139                        )
140                    )
141                } else {
142                    match arch.0.parse::<Architecture>() {
143                        Ok(a) => match (self.architecture, a) {
144                            (Architecture::Aarch64(_), Architecture::Aarch64(_))
145                            | (Architecture::Mips32(_), Architecture::Mips32(_))
146                            | (Architecture::Mips64(_), Architecture::Mips64(_))
147                            | (Architecture::Powerpc64le, Architecture::Powerpc64)
148                            | (Architecture::Riscv32(_), Architecture::Riscv32(_))
149                            | (Architecture::Riscv64(_), Architecture::Riscv64(_))
150                            | (Architecture::Sparcv9, Architecture::Sparc64) => true,
151                            (a, b) => a == b,
152                        },
153                        Err(_) => false,
154                    }
155                }
156            }
157            Endian(end) => match self.architecture.endianness() {
158                Ok(endian) => matches!(
159                    (end, endian),
160                    (crate::targets::Endian::little, Endianness::Little)
161                        | (crate::targets::Endian::big, Endianness::Big)
162                ),
163
164                Err(_) => false,
165            },
166            Env(env) => {
167                // The environment is implied by some operating systems
168                match self.operating_system {
169                    OperatingSystem::Redox => env == &targ::Env::relibc,
170                    OperatingSystem::VxWorks => env == &targ::Env::gnu,
171                    OperatingSystem::Freebsd => match self.architecture {
172                        Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
173                            env == &targ::Env::gnu
174                        }
175                        _ => env.0.is_empty(),
176                    },
177                    OperatingSystem::Netbsd => match self.architecture {
178                        Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
179                            env.0.is_empty()
180                        }
181                        _ => env.0.is_empty(),
182                    },
183                    OperatingSystem::None_
184                    | OperatingSystem::Cloudabi
185                    | OperatingSystem::Hermit
186                    | OperatingSystem::Ios => match self.environment {
187                        Environment::LinuxKernel => env == &targ::Env::gnu,
188                        _ => env.0.is_empty(),
189                    },
190                    OperatingSystem::WasiP1 => env == &targ::Env::p1,
191                    OperatingSystem::WasiP2 => env == &targ::Env::p2,
192                    OperatingSystem::Wasi => env.0.is_empty() || env == &targ::Env::p1,
193                    _ => {
194                        if env.0.is_empty() {
195                            matches!(
196                                self.environment,
197                                Environment::Unknown
198                                    | Environment::Android
199                                    | Environment::Softfloat
200                                    | Environment::Androideabi
201                                    | Environment::Eabi
202                                    | Environment::Eabihf
203                                    | Environment::Sim
204                                    | Environment::None
205                            )
206                        } else {
207                            match env.0.parse::<Environment>() {
208                                Ok(e) => {
209                                    // Rustc shortens multiple "gnu*" environments to just "gnu"
210                                    if env == &targ::Env::gnu {
211                                        match self.environment {
212                                            Environment::Gnu
213                                            | Environment::Gnuabi64
214                                            | Environment::Gnueabi
215                                            | Environment::Gnuspe
216                                            | Environment::Gnux32
217                                            | Environment::GnuIlp32
218                                            | Environment::Gnueabihf
219                                            | Environment::GnuLlvm => true,
220                                            // Rust 1.49.0 changed all android targets to have the
221                                            // gnu environment
222                                            Environment::Android | Environment::Androideabi
223                                                if self.operating_system
224                                                    == OperatingSystem::Linux =>
225                                            {
226                                                true
227                                            }
228                                            Environment::Kernel => {
229                                                self.operating_system == OperatingSystem::Linux
230                                            }
231                                            _ => false,
232                                        }
233                                    } else if env == &targ::Env::musl {
234                                        matches!(
235                                            self.environment,
236                                            Environment::Musl
237                                                | Environment::Musleabi
238                                                | Environment::Musleabihf
239                                                | Environment::Muslabi64
240                                        )
241                                    } else if env == &targ::Env::uclibc {
242                                        matches!(
243                                            self.environment,
244                                            Environment::Uclibc
245                                                | Environment::Uclibceabi
246                                                | Environment::Uclibceabihf
247                                        )
248                                    } else if env == &targ::Env::newlib {
249                                        matches!(
250                                            self.operating_system,
251                                            OperatingSystem::Horizon | OperatingSystem::Espidf
252                                        )
253                                    } else {
254                                        self.environment == e
255                                    }
256                                }
257                                Err(_) => false,
258                            }
259                        }
260                    }
261                }
262            }
263            Family(fam) => {
264                use OperatingSystem::{
265                    Aix, AmdHsa, Bitrig, Cloudabi, Cuda, Darwin, Dragonfly, Emscripten, Espidf,
266                    Freebsd, Fuchsia, Haiku, Hermit, Horizon, Hurd, Illumos, Ios, L4re, Linux,
267                    MacOSX, Nebulet, Netbsd, None_, Openbsd, Redox, Solaris, Tvos, Uefi, Unknown,
268                    Visionos, VxWorks, Wasi, WasiP1, WasiP2, Watchos, Windows,
269                };
270                match self.operating_system {
271                    AmdHsa | Bitrig | Cloudabi | Cuda | Hermit | Nebulet | None_ | Uefi => false,
272                    Aix
273                    | Darwin
274                    | Dragonfly
275                    | Espidf
276                    | Freebsd
277                    | Fuchsia
278                    | Haiku
279                    | Hurd
280                    | Illumos
281                    | Ios
282                    | L4re
283                    | MacOSX { .. }
284                    | Horizon
285                    | Netbsd
286                    | Openbsd
287                    | Redox
288                    | Solaris
289                    | Tvos
290                    | Visionos
291                    | VxWorks
292                    | Watchos => fam == &crate::targets::Family::unix,
293                    Emscripten => {
294                        match self.architecture {
295                            // asmjs, wasm32 and wasm64 are part of both the wasm and unix families
296                            Architecture::Asmjs | Architecture::Wasm32 => {
297                                fam == &crate::targets::Family::wasm
298                                    || fam == &crate::targets::Family::unix
299                            }
300                            _ => false,
301                        }
302                    }
303                    Unknown => {
304                        // asmjs, wasm32 and wasm64 are part of the wasm family.
305                        match self.architecture {
306                            Architecture::Asmjs | Architecture::Wasm32 | Architecture::Wasm64 => {
307                                fam == &crate::targets::Family::wasm
308                            }
309                            _ => false,
310                        }
311                    }
312                    Linux => {
313                        // The 'kernel' environment is treated specially as not-unix
314                        if self.environment != Environment::Kernel {
315                            fam == &crate::targets::Family::unix
316                        } else {
317                            false
318                        }
319                    }
320                    Wasi | WasiP1 | WasiP2 => fam == &crate::targets::Family::wasm,
321                    Windows => fam == &crate::targets::Family::windows,
322                    // I really dislike non-exhaustive :(
323                    _ => false,
324                }
325            }
326            HasAtomic(_) => {
327                // atomic support depends on both the architecture and the OS. Assume false for
328                // this.
329                false
330            }
331            Os(os) => {
332                if os == &targ::Os::wasi
333                    && matches!(
334                        self.operating_system,
335                        OperatingSystem::WasiP1 | OperatingSystem::WasiP2
336                    )
337                {
338                    return true;
339                }
340                match os.0.parse::<OperatingSystem>() {
341                    Ok(o) => match self.environment {
342                        Environment::HermitKernel => os == &targ::Os::hermit,
343                        _ => self.operating_system == o,
344                    },
345                    Err(_) => {
346                        // Handle special case for darwin/macos, where the triple is
347                        // "darwin", but rustc identifies the OS as "macos"
348                        if os == &targ::Os::macos
349                            && self.operating_system == OperatingSystem::Darwin
350                        {
351                            true
352                        } else {
353                            // For android, the os is still linux, but the environment is android
354                            os == &targ::Os::android
355                                && self.operating_system == OperatingSystem::Linux
356                                && (self.environment == Environment::Android
357                                    || self.environment == Environment::Androideabi)
358                        }
359                    }
360                }
361            }
362            Panic(_) => {
363                // panic support depends on the OS. Assume false for this.
364                false
365            }
366            Vendor(ven) => match ven.0.parse::<target_lexicon::Vendor>() {
367                Ok(v) => {
368                    if self.vendor == v {
369                        true
370                    } else if let target_lexicon::Vendor::Custom(custom) = &self.vendor {
371                        matches!(custom.as_str(), "esp" | "esp32" | "esp32s2" | "esp32s3")
372                            && (v == target_lexicon::Vendor::Espressif
373                                || v == target_lexicon::Vendor::Unknown)
374                    } else {
375                        false
376                    }
377                }
378                Err(_) => false,
379            },
380            PointerWidth(pw) => {
381                // The gnux32 environment is a special case, where it has an
382                // x86_64 architecture, but a 32-bit pointer width
383                if !matches!(
384                    self.environment,
385                    Environment::Gnux32 | Environment::GnuIlp32
386                ) {
387                    *pw == match self.pointer_width() {
388                        Ok(pw) => pw.bits(),
389                        Err(_) => return false,
390                    }
391                } else {
392                    *pw == 32
393                }
394            }
395        }
396    }
397}
398
399impl TargetPredicate {
400    /// Returns true of the predicate matches the specified target
401    ///
402    /// Note that when matching against a [`target_lexicon::Triple`], the
403    /// `has_target_atomic` and `panic` predicates will _always_ return `false`.
404    ///
405    /// ```
406    /// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
407    /// let win = get_builtin_target_by_triple("x86_64-pc-windows-msvc").unwrap();
408    ///
409    /// assert!(
410    ///     tp::Arch(Arch::x86_64).matches(win) &&
411    ///     tp::Endian(Endian::little).matches(win) &&
412    ///     tp::Env(Env::msvc).matches(win) &&
413    ///     tp::Family(Family::windows).matches(win) &&
414    ///     tp::Os(Os::windows).matches(win) &&
415    ///     tp::PointerWidth(64).matches(win) &&
416    ///     tp::Vendor(Vendor::pc).matches(win)
417    /// );
418    /// ```
419    pub fn matches<T>(&self, target: &T) -> bool
420    where
421        T: TargetMatcher,
422    {
423        target.matches(self)
424    }
425}
426
427#[derive(Clone, Debug)]
428pub(crate) enum Which {
429    Abi,
430    Arch,
431    Endian(targ::Endian),
432    Env,
433    Family,
434    Os,
435    HasAtomic(targ::HasAtomic),
436    Panic,
437    PointerWidth(u8),
438    Vendor,
439}
440
441#[derive(Clone, Debug)]
442pub(crate) struct InnerTarget {
443    which: Which,
444    span: Option<Range<usize>>,
445}
446
447/// A single predicate in a `cfg()` expression
448#[derive(Debug, PartialEq, Eq)]
449pub enum Predicate<'a> {
450    /// A target predicate, with the `target_` prefix
451    Target(TargetPredicate),
452    /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
453    Test,
454    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
455    /// when compiling without optimizations.
456    DebugAssertions,
457    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
458    /// crates of the `proc_macro` type.
459    ProcMacro,
460    /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
461    Feature(&'a str),
462    /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
463    TargetFeature(&'a str),
464    /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
465    Flag(&'a str),
466    /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
467    KeyValue { key: &'a str, val: &'a str },
468}
469
470#[derive(Clone, Debug)]
471pub(crate) enum InnerPredicate {
472    Target(InnerTarget),
473    Test,
474    DebugAssertions,
475    ProcMacro,
476    Feature(Range<usize>),
477    TargetFeature(Range<usize>),
478    Other {
479        identifier: Range<usize>,
480        value: Option<Range<usize>>,
481    },
482}
483
484impl InnerPredicate {
485    fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
486        use InnerPredicate as IP;
487        use Predicate::{
488            DebugAssertions, Feature, Flag, KeyValue, ProcMacro, Target, TargetFeature, Test,
489        };
490
491        match self {
492            IP::Target(it) => match &it.which {
493                Which::Abi => Target(TargetPredicate::Abi(targ::Abi::new(
494                    s[it.span.clone().unwrap()].to_owned(),
495                ))),
496                Which::Arch => Target(TargetPredicate::Arch(targ::Arch::new(
497                    s[it.span.clone().unwrap()].to_owned(),
498                ))),
499                Which::Os => Target(TargetPredicate::Os(targ::Os::new(
500                    s[it.span.clone().unwrap()].to_owned(),
501                ))),
502                Which::Vendor => Target(TargetPredicate::Vendor(targ::Vendor::new(
503                    s[it.span.clone().unwrap()].to_owned(),
504                ))),
505                Which::Env => Target(TargetPredicate::Env(targ::Env::new(
506                    s[it.span.clone().unwrap()].to_owned(),
507                ))),
508                Which::Family => Target(TargetPredicate::Family(targ::Family::new(
509                    s[it.span.clone().unwrap()].to_owned(),
510                ))),
511                Which::Endian(end) => Target(TargetPredicate::Endian(*end)),
512                Which::HasAtomic(has_atomic) => Target(TargetPredicate::HasAtomic(*has_atomic)),
513                Which::Panic => Target(TargetPredicate::Panic(targ::Panic::new(
514                    s[it.span.clone().unwrap()].to_owned(),
515                ))),
516                Which::PointerWidth(pw) => Target(TargetPredicate::PointerWidth(*pw)),
517            },
518            IP::Test => Test,
519            IP::DebugAssertions => DebugAssertions,
520            IP::ProcMacro => ProcMacro,
521            IP::Feature(rng) => Feature(&s[rng.clone()]),
522            IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
523            IP::Other { identifier, value } => match value {
524                Some(vs) => KeyValue {
525                    key: &s[identifier.clone()],
526                    val: &s[vs.clone()],
527                },
528                None => Flag(&s[identifier.clone()]),
529            },
530        }
531    }
532}
533
534#[derive(Clone, Debug)]
535pub(crate) enum ExprNode {
536    Fn(Func),
537    Predicate(InnerPredicate),
538}
539
540/// A parsed `cfg()` expression that can evaluated
541#[derive(Clone, Debug)]
542pub struct Expression {
543    pub(crate) expr: SmallVec<[ExprNode; 5]>,
544    // We keep the original string around for providing the arbitrary
545    // strings that can make up an expression
546    pub(crate) original: String,
547}
548
549impl Expression {
550    /// An iterator over each predicate in the expression
551    pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
552        self.expr.iter().filter_map(move |item| match item {
553            ExprNode::Predicate(pred) => {
554                let pred = pred.clone().to_pred(&self.original);
555                Some(pred)
556            }
557            ExprNode::Fn(_) => None,
558        })
559    }
560
561    /// Evaluates the expression, using the provided closure to determine the value of
562    /// each predicate, which are then combined into a final result depending on the
563    /// functions `not()`, `all()`, or `any()` in the expression.
564    ///
565    /// `eval_predicate` typically returns `bool`, but may return any type that implements
566    /// the `Logic` trait.
567    ///
568    /// ## Examples
569    ///
570    /// ```
571    /// use cfg_expr::{targets::*, Expression, Predicate};
572    ///
573    /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
574    ///
575    /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
576    ///
577    /// assert!(expr.eval(|pred| {
578    ///     match pred {
579    ///         Predicate::Target(tp) => tp.matches(linux_musl),
580    ///         _ => false,
581    ///     }
582    /// }));
583    /// ```
584    ///
585    /// Returning `Option<bool>`, where `None` indicates the result is unknown:
586    ///
587    /// ```
588    /// use cfg_expr::{targets::*, Expression, Predicate};
589    ///
590    /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
591    ///
592    /// let linux_gnu = get_builtin_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
593    /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
594    ///
595    /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
596    ///     expr.eval(|pred| {
597    ///         match pred {
598    ///             Predicate::Target(tp) => Some(tp.matches(target)),
599    ///             Predicate::TargetFeature(_) => None,
600    ///             _ => panic!("unexpected predicate"),
601    ///         }
602    ///     })
603    /// }
604    ///
605    /// // Whether the target feature is present is unknown, so the whole expression evaluates to
606    /// // None (unknown).
607    /// assert_eq!(eval(&expr, linux_gnu), None);
608    ///
609    /// // Whether the target feature is present is irrelevant for musl, since the any() always
610    /// // evaluates to true.
611    /// assert_eq!(eval(&expr, linux_musl), Some(true));
612    /// ```
613    pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
614    where
615        EP: FnMut(&Predicate<'_>) -> T,
616        T: Logic + std::fmt::Debug,
617    {
618        let mut result_stack = SmallVec::<[T; 8]>::new();
619
620        // We store the expression as postfix, so just evaluate each component
621        // requirement in the order it comes, and then combining the previous
622        // results according to each operator as it comes
623        for node in self.expr.iter() {
624            match node {
625                ExprNode::Predicate(pred) => {
626                    let pred = pred.to_pred(&self.original);
627
628                    result_stack.push(eval_predicate(&pred));
629                }
630                ExprNode::Fn(Func::All(count)) => {
631                    // all() with a comma separated list of configuration predicates.
632                    let mut result = T::top();
633
634                    for _ in 0..*count {
635                        let r = result_stack.pop().unwrap();
636                        result = result.and(r);
637                    }
638
639                    result_stack.push(result);
640                }
641                ExprNode::Fn(Func::Any(count)) => {
642                    // any() with a comma separated list of configuration predicates.
643                    let mut result = T::bottom();
644
645                    for _ in 0..*count {
646                        let r = result_stack.pop().unwrap();
647                        result = result.or(r);
648                    }
649
650                    result_stack.push(result);
651                }
652                ExprNode::Fn(Func::Not) => {
653                    // not() with a configuration predicate.
654                    // It is true if its predicate is false
655                    // and false if its predicate is true.
656                    let r = result_stack.pop().unwrap();
657                    result_stack.push(r.not());
658                }
659            }
660        }
661
662        result_stack.pop().unwrap()
663    }
664
665    /// The original string which has been parsed to produce this [`Expression`].
666    ///
667    /// ```
668    /// use cfg_expr::Expression;
669    ///
670    /// assert_eq!(
671    ///     Expression::parse("any()").unwrap().original(),
672    ///     "any()"
673    /// );
674    /// ```
675    #[inline]
676    pub fn original(&self) -> &str {
677        &self.original
678    }
679}
680
681/// [`PartialEq`] will do a **syntactical** comparison, so will just check if both
682/// expressions have been parsed from the same string, **not** if they are semantically
683/// equivalent.
684///
685/// ```
686/// use cfg_expr::Expression;
687///
688/// assert_eq!(
689///     Expression::parse("any()").unwrap(),
690///     Expression::parse("any()").unwrap()
691/// );
692/// assert_ne!(
693///     Expression::parse("any()").unwrap(),
694///     Expression::parse("unix").unwrap()
695/// );
696/// ```
697impl PartialEq for Expression {
698    fn eq(&self, other: &Self) -> bool {
699        self.original.eq(&other.original)
700    }
701}
702
703/// A propositional logic used to evaluate `Expression` instances.
704///
705/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
706/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
707pub trait Logic {
708    /// The result of an `all` operation with no operands, akin to Boolean `true`.
709    fn top() -> Self;
710
711    /// The result of an `any` operation with no operands, akin to Boolean `false`.
712    fn bottom() -> Self;
713
714    /// `AND`, which corresponds to the `all` operator.
715    fn and(self, other: Self) -> Self;
716
717    /// `OR`, which corresponds to the `any` operator.
718    fn or(self, other: Self) -> Self;
719
720    /// `NOT`, which corresponds to the `not` operator.
721    fn not(self) -> Self;
722}
723
724/// A boolean logic.
725impl Logic for bool {
726    #[inline]
727    fn top() -> Self {
728        true
729    }
730
731    #[inline]
732    fn bottom() -> Self {
733        false
734    }
735
736    #[inline]
737    fn and(self, other: Self) -> Self {
738        self && other
739    }
740
741    #[inline]
742    fn or(self, other: Self) -> Self {
743        self || other
744    }
745
746    #[inline]
747    fn not(self) -> Self {
748        !self
749    }
750}
751
752/// A three-valued logic -- `None` stands for the value being unknown.
753///
754/// The truth tables for this logic are described on
755/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
756impl Logic for Option<bool> {
757    #[inline]
758    fn top() -> Self {
759        Some(true)
760    }
761
762    #[inline]
763    fn bottom() -> Self {
764        Some(false)
765    }
766
767    #[inline]
768    fn and(self, other: Self) -> Self {
769        match (self, other) {
770            // If either is false, the expression is false.
771            (Some(false), _) | (_, Some(false)) => Some(false),
772            // If both are true, the expression is true.
773            (Some(true), Some(true)) => Some(true),
774            // One or both are unknown -- the result is unknown.
775            _ => None,
776        }
777    }
778
779    #[inline]
780    fn or(self, other: Self) -> Self {
781        match (self, other) {
782            // If either is true, the expression is true.
783            (Some(true), _) | (_, Some(true)) => Some(true),
784            // If both are false, the expression is false.
785            (Some(false), Some(false)) => Some(false),
786            // One or both are unknown -- the result is unknown.
787            _ => None,
788        }
789    }
790
791    #[inline]
792    fn not(self) -> Self {
793        self.map(|v| !v)
794    }
795}