adler2/algo.rs
1use crate::Adler32;
2use std::ops::{AddAssign, MulAssign, RemAssign};
3
4impl Adler32 {
5 pub(crate) fn compute(&mut self, bytes: &[u8]) {
6 // The basic algorithm is, for every byte:
7 // a = (a + byte) % MOD
8 // b = (b + a) % MOD
9 // where MOD = 65521.
10 //
11 // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows:
12 // - Between calls to `write`, we ensure that a and b are always in range 0..MOD.
13 // - We use 32-bit arithmetic in this function.
14 // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD`
15 // operation.
16 //
17 // According to Wikipedia, b is calculated as follows for non-incremental checksumming:
18 // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521)
19 // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account
20 // for the previous values of a and b, as well as treat every input Byte as being 255:
21 // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520
22 // Or in other words:
23 // b_inc = n*65520 + n(n+1)/2*255
24 // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521.
25 // 2^32-65521 = n*65520 + n(n+1)/2*255
26 // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552.
27 //
28 // On top of the optimization outlined above, the algorithm can also be parallelized with a
29 // bit more work:
30 //
31 // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn).
32 //
33 // If we fix some value k<N and rewrite indices 1, ..., N as
34 //
35 // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k,
36 //
37 // then we can express a and b in terms of sums of smaller sequences kb and ka:
38 //
39 // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k
40 // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k
41 //
42 // a = ka(1) + ka(2) + ... + ka(k) + 1
43 // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N
44 //
45 // We use this insight to unroll the main loop and process k=4 bytes at a time.
46 // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups
47 // stem from increased pipeline parallelism rather than auto-vectorization.
48 //
49 // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\
50 // en/develop/articles/fast-computation-of-fletcher-checksums.html]
51
52 const MOD: u32 = 65521;
53 const CHUNK_SIZE: usize = 5552 * 4;
54
55 let mut a = u32::from(self.a);
56 let mut b = u32::from(self.b);
57 let mut a_vec = U32X4([0; 4]);
58 let mut b_vec = a_vec;
59
60 let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4);
61
62 // iterate over 4 bytes at a time
63 let chunk_iter = bytes.chunks_exact(CHUNK_SIZE);
64 let remainder_chunk = chunk_iter.remainder();
65 for chunk in chunk_iter {
66 for byte_vec in chunk.chunks_exact(4) {
67 let val = U32X4::from(byte_vec);
68 a_vec += val;
69 b_vec += a_vec;
70 }
71
72 b += CHUNK_SIZE as u32 * a;
73 a_vec %= MOD;
74 b_vec %= MOD;
75 b %= MOD;
76 }
77 // special-case the final chunk because it may be shorter than the rest
78 for byte_vec in remainder_chunk.chunks_exact(4) {
79 let val = U32X4::from(byte_vec);
80 a_vec += val;
81 b_vec += a_vec;
82 }
83 b += remainder_chunk.len() as u32 * a;
84 a_vec %= MOD;
85 b_vec %= MOD;
86 b %= MOD;
87
88 // combine the sub-sum results into the main sum
89 b_vec *= 4;
90 b_vec.0[1] += MOD - a_vec.0[1];
91 b_vec.0[2] += (MOD - a_vec.0[2]) * 2;
92 b_vec.0[3] += (MOD - a_vec.0[3]) * 3;
93 for &av in a_vec.0.iter() {
94 a += av;
95 }
96 for &bv in b_vec.0.iter() {
97 b += bv;
98 }
99
100 // iterate over the remaining few bytes in serial
101 for &byte in remainder.iter() {
102 a += u32::from(byte);
103 b += a;
104 }
105
106 self.a = (a % MOD) as u16;
107 self.b = (b % MOD) as u16;
108 }
109}
110
111#[derive(Copy, Clone)]
112struct U32X4([u32; 4]);
113
114impl U32X4 {
115 #[inline]
116 fn from(bytes: &[u8]) -> Self {
117 U32X4([
118 u32::from(bytes[0]),
119 u32::from(bytes[1]),
120 u32::from(bytes[2]),
121 u32::from(bytes[3]),
122 ])
123 }
124}
125
126impl AddAssign<Self> for U32X4 {
127 #[inline]
128 fn add_assign(&mut self, other: Self) {
129 // Implement this in a primitive manner to help out the compiler a bit.
130 self.0[0] += other.0[0];
131 self.0[1] += other.0[1];
132 self.0[2] += other.0[2];
133 self.0[3] += other.0[3];
134 }
135}
136
137impl RemAssign<u32> for U32X4 {
138 #[inline]
139 fn rem_assign(&mut self, quotient: u32) {
140 self.0[0] %= quotient;
141 self.0[1] %= quotient;
142 self.0[2] %= quotient;
143 self.0[3] %= quotient;
144 }
145}
146
147impl MulAssign<u32> for U32X4 {
148 #[inline]
149 fn mul_assign(&mut self, rhs: u32) {
150 self.0[0] *= rhs;
151 self.0[1] *= rhs;
152 self.0[2] *= rhs;
153 self.0[3] *= rhs;
154 }
155}