adler2/
algo.rs

1use crate::Adler32;
2use std::ops::{AddAssign, MulAssign, RemAssign};
3
4impl Adler32 {
5    pub(crate) fn compute(&mut self, bytes: &[u8]) {
6        // The basic algorithm is, for every byte:
7        //   a = (a + byte) % MOD
8        //   b = (b + a) % MOD
9        // where MOD = 65521.
10        //
11        // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows:
12        // - Between calls to `write`, we ensure that a and b are always in range 0..MOD.
13        // - We use 32-bit arithmetic in this function.
14        // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD`
15        //   operation.
16        //
17        // According to Wikipedia, b is calculated as follows for non-incremental checksumming:
18        //   b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521)
19        // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account
20        // for the previous values of a and b, as well as treat every input Byte as being 255:
21        //   b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520
22        // Or in other words:
23        //   b_inc = n*65520 + n(n+1)/2*255
24        // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521.
25        //   2^32-65521 = n*65520 + n(n+1)/2*255
26        // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552.
27        //
28        // On top of the optimization outlined above, the algorithm can also be parallelized with a
29        // bit more work:
30        //
31        // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn).
32        //
33        // If we fix some value k<N and rewrite indices 1, ..., N as
34        //
35        //   1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k,
36        //
37        // then we can express a and b in terms of sums of smaller sequences kb and ka:
38        //
39        //   ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k
40        //   kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k
41        //
42        //  a = ka(1) + ka(2) + ... + ka(k) + 1
43        //  b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ...  - (k-1)*ka(k) + N
44        //
45        // We use this insight to unroll the main loop and process k=4 bytes at a time.
46        // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups
47        // stem from increased pipeline parallelism rather than auto-vectorization.
48        //
49        // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\
50        // en/develop/articles/fast-computation-of-fletcher-checksums.html]
51
52        const MOD: u32 = 65521;
53        const CHUNK_SIZE: usize = 5552 * 4;
54
55        let mut a = u32::from(self.a);
56        let mut b = u32::from(self.b);
57        let mut a_vec = U32X4([0; 4]);
58        let mut b_vec = a_vec;
59
60        let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4);
61
62        // iterate over 4 bytes at a time
63        let chunk_iter = bytes.chunks_exact(CHUNK_SIZE);
64        let remainder_chunk = chunk_iter.remainder();
65        for chunk in chunk_iter {
66            for byte_vec in chunk.chunks_exact(4) {
67                let val = U32X4::from(byte_vec);
68                a_vec += val;
69                b_vec += a_vec;
70            }
71
72            b += CHUNK_SIZE as u32 * a;
73            a_vec %= MOD;
74            b_vec %= MOD;
75            b %= MOD;
76        }
77        // special-case the final chunk because it may be shorter than the rest
78        for byte_vec in remainder_chunk.chunks_exact(4) {
79            let val = U32X4::from(byte_vec);
80            a_vec += val;
81            b_vec += a_vec;
82        }
83        b += remainder_chunk.len() as u32 * a;
84        a_vec %= MOD;
85        b_vec %= MOD;
86        b %= MOD;
87
88        // combine the sub-sum results into the main sum
89        b_vec *= 4;
90        b_vec.0[1] += MOD - a_vec.0[1];
91        b_vec.0[2] += (MOD - a_vec.0[2]) * 2;
92        b_vec.0[3] += (MOD - a_vec.0[3]) * 3;
93        for &av in a_vec.0.iter() {
94            a += av;
95        }
96        for &bv in b_vec.0.iter() {
97            b += bv;
98        }
99
100        // iterate over the remaining few bytes in serial
101        for &byte in remainder.iter() {
102            a += u32::from(byte);
103            b += a;
104        }
105
106        self.a = (a % MOD) as u16;
107        self.b = (b % MOD) as u16;
108    }
109}
110
111#[derive(Copy, Clone)]
112struct U32X4([u32; 4]);
113
114impl U32X4 {
115    #[inline]
116    fn from(bytes: &[u8]) -> Self {
117        U32X4([
118            u32::from(bytes[0]),
119            u32::from(bytes[1]),
120            u32::from(bytes[2]),
121            u32::from(bytes[3]),
122        ])
123    }
124}
125
126impl AddAssign<Self> for U32X4 {
127    #[inline]
128    fn add_assign(&mut self, other: Self) {
129        // Implement this in a primitive manner to help out the compiler a bit.
130        self.0[0] += other.0[0];
131        self.0[1] += other.0[1];
132        self.0[2] += other.0[2];
133        self.0[3] += other.0[3];
134    }
135}
136
137impl RemAssign<u32> for U32X4 {
138    #[inline]
139    fn rem_assign(&mut self, quotient: u32) {
140        self.0[0] %= quotient;
141        self.0[1] %= quotient;
142        self.0[2] %= quotient;
143        self.0[3] %= quotient;
144    }
145}
146
147impl MulAssign<u32> for U32X4 {
148    #[inline]
149    fn mul_assign(&mut self, rhs: u32) {
150        self.0[0] *= rhs;
151        self.0[1] *= rhs;
152        self.0[2] *= rhs;
153        self.0[3] *= rhs;
154    }
155}