1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
//! Access and manage memory of a plugin process.
//!
//! The starting point for the public API is [`MemoryManager`].
//! [`MemoryManager`] can be used to:
//!
//! * Directly read or write process memory
//! * Obtain smart pointers ([`ProcessMemoryRef`] and [`ProcessMemoryRefMut`])
//!   to process memory
//! * Obtain cursors to process memory implementing `std::io::Seek` and either
//!   `std::io::Read` or `std::io::Write` ([`MemoryReaderCursor`] and
//!   [`MemoryWriterCursor`])
//!
//! For the [`MemoryManager`] to maintain a consistent view of the process's address space,
//! and for it to be able to enforce Rust's safety requirements for references and sharing,
//! all access to process memory must go through it. This includes servicing syscalls that
//! modify the process address space (such as `mmap`).

use std::fmt::Debug;
use std::mem::MaybeUninit;
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;

use linux_api::errno::Errno;
use linux_api::mman::{MapFlags, ProtFlags};
use linux_api::posix_types::Pid;
use log::*;
use memory_copier::MemoryCopier;
use memory_mapper::MemoryMapper;
use shadow_pod::Pod;
use shadow_shim_helper_rs::syscall_types::ForeignPtr;

use super::context::ThreadContext;
use crate::host::syscall::types::{ForeignArrayPtr, SyscallError};

mod memory_copier;
mod memory_mapper;

/// An object implementing std::io::Read and std::io::Seek for
/// a range of plugin memory.
pub struct MemoryReaderCursor<'a> {
    memory_manager: &'a MemoryManager,
    ptr: ForeignArrayPtr<u8>,
    offset: usize,
}

impl<'a> std::io::Read for MemoryReaderCursor<'a> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let ptr = self.ptr.slice(self.offset..);
        let toread = std::cmp::min(buf.len(), ptr.len());
        if toread == 0 {
            return Ok(0);
        }
        self.memory_manager
            .copy_from_ptr(&mut buf[..toread], ptr.slice(..toread))?;
        self.offset += toread;
        Ok(toread)
    }
}

/// Shared implementation of seek for both MemoryReaderCursor and MemoryWriterCursor.
fn seek_helper(offset: &mut usize, len: usize, pos: std::io::SeekFrom) -> std::io::Result<u64> {
    use std::io::SeekFrom;
    let new_offset = match pos {
        SeekFrom::Current(x) => *offset as i64 + x,
        SeekFrom::End(x) => len as i64 + x,
        SeekFrom::Start(x) => x as i64,
    };
    // Seeking before the beginning is an error (but seeking to or past the
    // end isn't).
    if new_offset < 0 {
        return Err(Errno::EFAULT.into());
    }
    *offset = new_offset as usize;
    Ok(new_offset as u64)
}

impl<'a> std::io::Seek for MemoryReaderCursor<'a> {
    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
        seek_helper(&mut self.offset, self.ptr.len(), pos)
    }
}

/// An object implementing std::io::Write and std::io::Seek for
/// a range of plugin memory.
pub struct MemoryWriterCursor<'a> {
    memory_manager: &'a mut MemoryManager,
    ptr: ForeignArrayPtr<u8>,
    offset: usize,
}

impl<'a> std::io::Write for MemoryWriterCursor<'a> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let ptr = self.ptr.slice(self.offset..);
        let towrite = std::cmp::min(buf.len(), ptr.len());
        if towrite == 0 {
            return Ok(0);
        }
        self.memory_manager
            .copy_to_ptr(ptr.slice(..towrite), &buf[..towrite])?;
        self.offset += towrite;
        Ok(towrite)
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

impl<'a> std::io::Seek for MemoryWriterCursor<'a> {
    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
        seek_helper(&mut self.offset, self.ptr.len(), pos)
    }
}

enum CopiedOrMapped<'a, T: Debug + Pod> {
    // Data copied from plugin memory.
    Copied(Vec<T>),
    // Data memory-mapped from plugin memory.
    Mapped(&'a [T]),
}

/// An immutable reference to a slice of plugin memory. Implements `Deref<[T]>`,
/// allowing, e.g.:
///
/// ```ignore
/// let tpp = ForeignArrayPtr::<u32>::new(ptr, 10);
/// let pmr = memory_manager.memory_ref(ptr);
/// assert_eq!(pmr.len(), 10);
/// let x = pmr[5];
/// ```
pub struct ProcessMemoryRef<'a, T: Debug + Pod>(CopiedOrMapped<'a, T>);

impl<'a, T: Debug + Pod> ProcessMemoryRef<'a, T> {
    fn new_copied(v: Vec<T>) -> Self {
        Self(CopiedOrMapped::Copied(v))
    }

    fn new_mapped(s: &'a [T]) -> Self {
        Self(CopiedOrMapped::Mapped(s))
    }
}

impl<'a> ProcessMemoryRef<'a, u8> {
    /// Get a `cstr` from the reference. Fails with `ENAMETOOLONG` if there is no
    /// NULL byte.
    pub fn get_cstr(&self) -> Result<&std::ffi::CStr, Errno> {
        std::ffi::CStr::from_bytes_until_nul(self).or(Err(Errno::ENAMETOOLONG))
    }
}

impl<'a, T> Deref for ProcessMemoryRef<'a, T>
where
    T: Debug + Pod,
{
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        match &self.0 {
            CopiedOrMapped::Copied(v) => v,
            CopiedOrMapped::Mapped(s) => s,
        }
    }
}

#[derive(Debug)]
enum CopiedOrMappedMut<'a, T: Debug + Pod> {
    // Data copied from process memory, to be written back.
    Copied(MemoryCopier, ForeignArrayPtr<T>, Vec<T>),
    // Memory-mapped process memory.
    Mapped(&'a mut [T]),
}

/// A mutable reference to a slice of plugin memory. Implements `DerefMut<[T]>`,
/// allowing, e.g.:
///
/// ```ignore
/// let tpp = ForeignArrayPtr::<u32>::new(ptr, 10);
/// let pmr = memory_manager.memory_ref_mut(ptr);
/// assert_eq!(pmr.len(), 10);
/// pmr[5] = 100;
/// ```
///
/// The object must be disposed of by calling `flush` or `noflush`.  Dropping
/// the object without doing so will result in a panic.
#[derive(Debug)]
pub struct ProcessMemoryRefMut<'a, T: Debug + Pod> {
    copied_or_mapped: CopiedOrMappedMut<'a, T>,
    dirty: bool,
}

impl<'a, T: Debug + Pod> ProcessMemoryRefMut<'a, T> {
    fn new_copied(copier: MemoryCopier, ptr: ForeignArrayPtr<T>, v: Vec<T>) -> Self {
        Self {
            copied_or_mapped: CopiedOrMappedMut::Copied(copier, ptr, v),
            dirty: true,
        }
    }

    fn new_mapped(s: &'a mut [T]) -> Self {
        Self {
            copied_or_mapped: CopiedOrMappedMut::Mapped(s),
            dirty: true,
        }
    }

    /// Call to dispose of the reference while writing back the contents
    /// to process memory (if it hasn't already effectively been done).
    ///
    /// WARNING: if this reference was obtained via
    /// `Memorymanager::memory_ref_mut_uninit`, and the contents haven't been
    /// overwritten, call `noflush` instead to avoid flushing back the
    /// unininitialized contents.
    pub fn flush(mut self) -> Result<(), Errno> {
        // Whether the flush succeeds or not, the buffer is no longer considered
        // dirty; the fact that it failed will be captured in an error result.
        self.dirty = false;

        match &self.copied_or_mapped {
            CopiedOrMappedMut::Copied(copier, ptr, v) => {
                trace!(
                    "Flushing {} bytes to {:x}",
                    ptr.len() * std::mem::size_of::<T>(),
                    usize::from(ptr.ptr())
                );
                unsafe { copier.copy_to_ptr(*ptr, v)? };
            }
            CopiedOrMappedMut::Mapped(_) => (),
        };
        Ok(())
    }

    /// Disposes of the reference *without* writing back the contents.
    /// This should be used instead of `flush` if and only if the contents
    /// of this reference hasn't been overwritten.
    pub fn noflush(mut self) {
        self.dirty = false;
    }
}

impl<'a, T: Debug + Pod> Drop for ProcessMemoryRefMut<'a, T> {
    fn drop(&mut self) {
        // Dropping without flushing is a bug.
        assert!(!self.dirty);
    }
}

impl<'a, T> Deref for ProcessMemoryRefMut<'a, T>
where
    T: Debug + Pod,
{
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        match &self.copied_or_mapped {
            CopiedOrMappedMut::Copied(_, _, v) => v,
            CopiedOrMappedMut::Mapped(s) => s,
        }
    }
}

impl<'a, T> DerefMut for ProcessMemoryRefMut<'a, T>
where
    T: Debug + Pod,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        match &mut self.copied_or_mapped {
            CopiedOrMappedMut::Copied(_, _, v) => v,
            CopiedOrMappedMut::Mapped(s) => s,
        }
    }
}

fn page_size() -> usize {
    nix::unistd::sysconf(nix::unistd::SysconfVar::PAGE_SIZE)
        .unwrap()
        .unwrap()
        .try_into()
        .unwrap()
}

/// Provides accessors for reading and writing another process's memory.
///
/// When in use, any operation that touches that process's memory must go
/// through the MemoryManager to ensure soundness. See MemoryManager::new.
//
// The MemoryManager is the Rust representation of a plugin process's address
// space.  For every access it tries to go through the more-efficient
// MemoryMapper helper first, and falls back to the MemoryCopier if it hasn't
// been initialized yet, or the access isn't contained entirely within a region
// that's been remapped.
#[derive(Debug)]
pub struct MemoryManager {
    // Memory accessor that works by copying data to and from process memory.
    // This is the most robust mechanism, but requires some syscalls, and in
    // some cases extra copies of the referenced data.
    memory_copier: MemoryCopier,

    // Memory accessor that works by remapping memory of the target process into
    // the calling process's address space. Individual accesses are fast, but
    // this accessor isn't available at program start, and doesn't support all
    // accesses.
    memory_mapper: Option<MemoryMapper>,

    // Native pid of the plugin process.
    pid: Pid,
}

impl MemoryManager {
    /// # Safety
    ///
    /// `pid`'s memory must not be modified without holding an exclusive
    /// (mutable) reference to the returned MemoryManager. In Shadow we ensure
    /// this by:
    /// * Creating only one MemoryManager for a given process.
    /// * TODO: Not allowing any thread in the process to execute without
    ///   holding a mutable reference to its MemoryManager.
    /// * Not directly modifying process memory via other techniques.
    /// * Assuming (!) nothing else concurrently modifies memory of the given process.
    ///   (e.g. that some other process doesn't start calling `process_vm_writev`
    ///   to write to the process's memory).
    /// * TODO: Validating that the process doesn't have any shared memory mappings
    ///   other than with Shadow or other simulated processes under Shadow's control.
    pub unsafe fn new(pid: Pid) -> Self {
        Self {
            pid,
            memory_copier: MemoryCopier::new(pid),
            memory_mapper: None,
        }
    }

    // Internal helper for getting a reference to memory via the
    // `memory_mapper`.  Calling methods should fall back to the `memory_copier`
    // on failure.
    fn mapped_ref<T: Pod + Debug>(&self, ptr: ForeignArrayPtr<T>) -> Option<&[T]> {
        let mm = self.memory_mapper.as_ref()?;
        // SAFETY: No mutable refs to process memory exist by preconditions of
        // MemoryManager::new + we have a reference.
        unsafe { mm.get_ref(ptr) }
    }

    // Internal helper for getting a reference to memory via the
    // `memory_mapper`.  Calling methods should fall back to the `memory_copier`
    // on failure.
    fn mapped_mut<T: Pod + Debug>(&mut self, ptr: ForeignArrayPtr<T>) -> Option<&mut [T]> {
        let mm = self.memory_mapper.as_ref()?;
        // SAFETY: No other refs to process memory exist by preconditions of
        // MemoryManager::new + we have an exclusive reference.
        unsafe { mm.get_mut(ptr) }
    }

    /// Returns a reference to the given memory, copying to a local buffer if
    /// the memory isn't mapped into Shadow.
    pub fn memory_ref<T: Pod + Debug>(
        &self,
        ptr: ForeignArrayPtr<T>,
    ) -> Result<ProcessMemoryRef<'_, T>, Errno> {
        if let Some(mref) = self.mapped_ref(ptr) {
            Ok(ProcessMemoryRef::new_mapped(mref))
        } else {
            Ok(ProcessMemoryRef::new_copied(unsafe {
                self.memory_copier.clone_mem(ptr)?
            }))
        }
    }

    /// Returns a reference to the memory from the beginning of the given
    /// pointer to the last address in the pointer that's accessible. Useful for
    /// accessing string data of unknown size. The data is copied to a local
    /// buffer if the memory isn't mapped into Shadow.
    pub fn memory_ref_prefix<T: Pod + Debug>(
        &self,
        ptr: ForeignArrayPtr<T>,
    ) -> Result<ProcessMemoryRef<T>, Errno> {
        // Only use the mapped ref if it's able to get the whole region,
        // since otherwise the copying version might be able to get more
        // data.
        //
        // TODO: Implement and use MemoryMapper::memory_ref_prefix if and
        // when we're confident that the MemoryMapper always knows about all
        // mapped regions and merges adjacent regions.
        if let Some(mref) = self.mapped_ref(ptr) {
            Ok(ProcessMemoryRef::new_mapped(mref))
        } else {
            Ok(ProcessMemoryRef::new_copied(unsafe {
                self.memory_copier.clone_mem_prefix(ptr)?
            }))
        }
    }

    /// Creates a std::io::Read accessor for the specified plugin memory. Useful
    /// for handing off the ability to read process memory to non-Shadow APIs,
    /// without copying it to local memory first.
    pub fn reader(&self, ptr: ForeignArrayPtr<u8>) -> MemoryReaderCursor<'_> {
        MemoryReaderCursor {
            memory_manager: self,
            ptr,
            offset: 0,
        }
    }

    /// Reads the memory into a local copy. `memory_ref` is potentially more
    /// efficient, but this is useful to avoid borrowing from the MemoryManager;
    /// e.g. when we still want to be able to access the data while also writing
    /// to process memory.
    ///
    /// Examples:
    ///
    /// ```no_run
    /// # use shadow_shim_helper_rs::syscall_types::ForeignPtr;
    /// # use shadow_rs::host::memory_manager::MemoryManager;
    /// # use linux_api::errno::Errno;
    /// # fn foo() -> Result<(), Errno> {
    /// # let memory_manager: MemoryManager = todo!();
    /// let ptr: ForeignPtr<u32> = todo!();
    /// let val: u32 = memory_manager.read(ptr)?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// ```no_run
    /// # use shadow_shim_helper_rs::syscall_types::ForeignPtr;
    /// # use shadow_rs::host::memory_manager::MemoryManager;
    /// # use linux_api::errno::Errno;
    /// # fn foo() -> Result<(), Errno> {
    /// # let memory_manager: MemoryManager = todo!();
    /// let ptr: ForeignPtr<[u32; 2]> = todo!();
    /// let val: [u32; 2] = memory_manager.read(ptr)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn read<T: Pod + Debug>(&self, ptr: ForeignPtr<T>) -> Result<T, Errno> {
        let ptr = ptr.cast::<MaybeUninit<T>>();
        let mut res: MaybeUninit<T> = MaybeUninit::uninit();

        self.copy_from_ptr(std::slice::from_mut(&mut res), ForeignArrayPtr::new(ptr, 1))?;
        // SAFETY: any values are valid for Pod
        Ok(unsafe { res.assume_init() })
    }

    /// Writes a local value `val` into the memory at `ptr`.
    ///
    /// ```no_run
    /// # use shadow_shim_helper_rs::syscall_types::ForeignPtr;
    /// # use shadow_rs::host::memory_manager::MemoryManager;
    /// # use linux_api::errno::Errno;
    /// # fn foo() -> Result<(), Errno> {
    /// # let mut memory_manager: MemoryManager = todo!();
    /// let ptr: ForeignPtr<u32> = todo!();
    /// let val = 5;
    /// memory_manager.write(ptr, &val)?;
    /// # Ok(())
    /// # }
    /// ```
    // take a `&T` rather than a `T` since all `Pod` types are `Copy`, and it's probably more
    // performant to accept a reference than copying the type here if `T` is large
    pub fn write<T: Pod + Debug>(&mut self, ptr: ForeignPtr<T>, val: &T) -> Result<(), Errno> {
        self.copy_to_ptr(ForeignArrayPtr::new(ptr, 1), std::slice::from_ref(val))
    }

    /// Similar to `read`, but saves a copy if you already have a `dst` to copy the data into.
    pub fn copy_from_ptr<T: Debug + Pod>(
        &self,
        dst: &mut [T],
        src: ForeignArrayPtr<T>,
    ) -> Result<(), Errno> {
        if let Some(src) = self.mapped_ref(src) {
            dst.copy_from_slice(src);
            return Ok(());
        }
        unsafe { self.memory_copier.copy_from_ptr(dst, src) }
    }

    // Copies memory from the beginning of the given pointer to the last address
    // in the pointer that's accessible. Not exposed as a public interface
    // because this is generally only useful for strings, and
    // `copy_str_from_ptr` provides a more convenient interface.
    fn copy_prefix_from_ptr<T: Debug + Pod>(
        &self,
        buf: &mut [T],
        ptr: ForeignArrayPtr<T>,
    ) -> Result<usize, Errno> {
        if let Some(src) = self.mapped_ref(ptr) {
            buf.copy_from_slice(src);
            return Ok(src.len());
        }
        unsafe { self.memory_copier.copy_prefix_from_ptr(buf, ptr) }
    }

    /// Copies a NULL-terminated string starting from the beginning of `src` and
    /// contained completely within `src`. Still works if some of `src` isn't
    /// readable, as long as a NULL-terminated-string is contained in the
    /// readable prefix.
    ///
    /// If holding a reference to the MemoryManager for the lifetime of the
    /// string is acceptable, use `memory_ref_prefix` and
    /// `ProcessMemoryRef::get_str` to potentially avoid an extra copy.
    pub fn copy_str_from_ptr<'a>(
        &self,
        dst: &'a mut [u8],
        src: ForeignArrayPtr<u8>,
    ) -> Result<&'a std::ffi::CStr, Errno> {
        let nread = self.copy_prefix_from_ptr(dst, src)?;
        let dst = &dst[..nread];
        std::ffi::CStr::from_bytes_until_nul(dst).or(Err(Errno::ENAMETOOLONG))
    }

    /// Returns a mutable reference to the given memory. If the memory isn't
    /// mapped into Shadow, copies the data to a local buffer, which is written
    /// back into the process if and when the reference is flushed.
    pub fn memory_ref_mut<T: Pod + Debug>(
        &mut self,
        ptr: ForeignArrayPtr<T>,
    ) -> Result<ProcessMemoryRefMut<'_, T>, Errno> {
        // Work around a limitation of the borrow checker by getting this
        // immutable borrow of self out of the way before we do a mutable
        // borrow.
        let pid = self.pid;

        if let Some(mref) = self.mapped_mut(ptr) {
            Ok(ProcessMemoryRefMut::new_mapped(mref))
        } else {
            let copier = MemoryCopier::new(pid);
            let v = unsafe { copier.clone_mem(ptr)? };
            Ok(ProcessMemoryRefMut::new_copied(copier, ptr, v))
        }
    }

    /// Returns a mutable reference to the given memory. If the memory isn't
    /// mapped into Shadow, just returns a buffer with unspecified contents,
    /// which will be written back into the process if and when the reference
    /// is flushed.
    //
    // In some cases we initialize data to avoid actually returning
    // uninitialized memory.  We use inline(always) so that the compiler can
    // hopefully optimize away this initialization, in cases where the caller
    // overwrites the data.
    // TODO: return ProcessMemoryRefMut<MaybeUninit<T>> instead.
    #[inline(always)]
    pub fn memory_ref_mut_uninit<T: Pod + Debug>(
        &mut self,
        ptr: ForeignArrayPtr<T>,
    ) -> Result<ProcessMemoryRefMut<'_, T>, Errno> {
        // Work around a limitation of the borrow checker by getting this
        // immutable borrow of self out of the way before we do a mutable
        // borrow.
        let pid = self.pid;

        let mut mref = if let Some(mref) = self.mapped_mut(ptr) {
            // Even if we haven't initialized the data from this process, the
            // data is initialized from the Rust compiler's perspective; it has
            // *some* set contents via mmap, even if the other process hasn't
            // initialized it either.
            ProcessMemoryRefMut::new_mapped(mref)
        } else {
            let mut v = Vec::with_capacity(ptr.len());
            v.resize(ptr.len(), shadow_pod::zeroed());
            ProcessMemoryRefMut::new_copied(MemoryCopier::new(pid), ptr, v)
        };

        // In debug builds, overwrite with garbage to shake out bugs where
        // caller treats as initd; e.g. by reading the data or flushing it
        // back to the process without initializing it.
        if cfg!(debug_assertions) {
            // SAFETY: We do not write uninitialized data into `bytes`.
            let bytes = unsafe { shadow_pod::to_u8_slice_mut(&mut mref[..]) };
            for byte in bytes {
                unsafe { byte.as_mut_ptr().write(0x42) }
            }
        }

        Ok(mref)
    }

    /// Writes the memory from a local copy. If `src` doesn't already exist,
    /// using `memory_ref_mut_uninit` and initializing the data in that
    /// reference saves a copy.
    pub fn copy_to_ptr<T: Pod + Debug>(
        &mut self,
        dst: ForeignArrayPtr<T>,
        src: &[T],
    ) -> Result<(), Errno> {
        if let Some(dst) = self.mapped_mut(dst) {
            dst.copy_from_slice(src);
            return Ok(());
        }
        // SAFETY: No other refs to process memory exist by preconditions of
        // MemoryManager::new + we have an exclusive reference.
        unsafe { self.memory_copier.copy_to_ptr(dst, src) }
    }

    /// Which process's address space this MemoryManager manages.
    pub fn pid(&self) -> Pid {
        self.pid
    }

    /// Initialize the MemoryMapper, allowing for more efficient access. Needs a
    /// running thread.
    pub fn init_mapper(&mut self, ctx: &ThreadContext) {
        assert!(self.memory_mapper.is_none());
        self.memory_mapper = Some(MemoryMapper::new(self, ctx));
    }

    /// Whether the internal MemoryMapper has been initialized.
    pub fn has_mapper(&self) -> bool {
        self.memory_mapper.is_some()
    }

    /// Create a write accessor for the specified plugin memory.
    pub fn writer(&mut self, ptr: ForeignArrayPtr<u8>) -> MemoryWriterCursor<'_> {
        MemoryWriterCursor {
            memory_manager: self,
            ptr,
            offset: 0,
        }
    }

    pub fn handle_brk(
        &mut self,
        ctx: &ThreadContext,
        ptr: ForeignPtr<u8>,
    ) -> Result<ForeignPtr<u8>, SyscallError> {
        match &mut self.memory_mapper {
            Some(mm) => Ok(mm.handle_brk(ctx, ptr)?),
            None => Err(SyscallError::Native),
        }
    }

    pub fn do_mmap(
        &mut self,
        ctx: &ThreadContext,
        addr: ForeignPtr<u8>,
        length: usize,
        prot: ProtFlags,
        flags: MapFlags,
        fd: i32,
        offset: i64,
    ) -> Result<ForeignPtr<u8>, Errno> {
        let addr = {
            let (ctx, thread) = ctx.split_thread();
            thread.native_mmap(&ctx, addr, length, prot, flags, fd, offset)?
        };
        if let Some(mm) = &mut self.memory_mapper {
            mm.handle_mmap_result(ctx, ForeignArrayPtr::new(addr, length), prot, flags, fd);
        }
        Ok(addr)
    }

    pub fn handle_munmap(
        &mut self,
        ctx: &ThreadContext,
        addr: ForeignPtr<u8>,
        length: usize,
    ) -> Result<(), SyscallError> {
        if self.memory_mapper.is_some() {
            // Do it ourselves so that we can update our mappings based on
            // whether it succeeded.
            self.do_munmap(ctx, addr, length)?;
            Ok(())
        } else {
            // We don't need to know the result, and it's more efficient to let
            // the original syscall complete than to do it ourselves.
            Err(SyscallError::Native)
        }
    }

    fn do_munmap(
        &mut self,
        ctx: &ThreadContext,
        addr: ForeignPtr<u8>,
        length: usize,
    ) -> Result<(), Errno> {
        let (ctx, thread) = ctx.split_thread();
        thread.native_munmap(&ctx, addr, length)?;
        if let Some(mm) = &mut self.memory_mapper {
            mm.handle_munmap_result(addr, length);
        }
        Ok(())
    }

    pub fn handle_mremap(
        &mut self,
        ctx: &ThreadContext,
        old_address: ForeignPtr<u8>,
        old_size: usize,
        new_size: usize,
        flags: i32,
        new_address: ForeignPtr<u8>,
    ) -> Result<ForeignPtr<u8>, SyscallError> {
        match &mut self.memory_mapper {
            Some(mm) => {
                Ok(mm.handle_mremap(ctx, old_address, old_size, new_size, flags, new_address)?)
            }
            None => Err(SyscallError::Native),
        }
    }

    pub fn handle_mprotect(
        &mut self,
        ctx: &ThreadContext,
        addr: ForeignPtr<u8>,
        size: usize,
        prot: ProtFlags,
    ) -> Result<(), SyscallError> {
        match &mut self.memory_mapper {
            Some(mm) => Ok(mm.handle_mprotect(ctx, addr, size, prot)?),
            None => Err(SyscallError::Native),
        }
    }
}

/// Memory allocated by Shadow, in a remote address space.
pub struct AllocdMem<T>
where
    T: Pod,
{
    ptr: ForeignArrayPtr<T>,
    // Whether the pointer has been freed.
    freed: bool,
}

impl<T> AllocdMem<T>
where
    T: Pod,
{
    /// Allocate memory in the current active process.
    /// Must be freed explicitly via `free`.
    pub fn new(ctx: &ThreadContext, len: usize) -> Self {
        let prot = ProtFlags::PROT_READ | ProtFlags::PROT_WRITE;

        // Allocate through the MemoryManager, so that it knows about this region.
        let ptr = ctx
            .process
            .memory_borrow_mut()
            .do_mmap(
                ctx,
                ForeignPtr::null(),
                len * std::mem::size_of::<T>(),
                prot,
                MapFlags::MAP_ANONYMOUS | MapFlags::MAP_PRIVATE,
                -1,
                0,
            )
            .unwrap();

        Self {
            ptr: ForeignArrayPtr::new(ptr.cast::<T>(), len),
            freed: false,
        }
    }

    /// Pointer to the allocated memory.
    pub fn ptr(&self) -> ForeignArrayPtr<T> {
        self.ptr
    }

    pub fn free(mut self, ctx: &ThreadContext) {
        ctx.process
            .memory_borrow_mut()
            .do_munmap(
                ctx,
                self.ptr.ptr().cast::<u8>(),
                self.ptr.len() * std::mem::size_of::<T>(),
            )
            .unwrap();
        self.freed = true;
    }
}

impl<T> Drop for AllocdMem<T>
where
    T: Pod,
{
    fn drop(&mut self) {
        // We need the thread context to free the memory. Nothing to do now but
        // complain.
        if !self.freed {
            warn!("Memory leak: failed to free {:?}", self.ptr)
        }
        debug_assert!(self.freed);
    }
}

mod export {
    use shadow_shim_helper_rs::notnull::*;
    use shadow_shim_helper_rs::syscall_types::UntypedForeignPtr;

    use super::*;

    /// Copy `n` bytes from `src` to `dst`. Returns 0 on success or -EFAULT if any of the specified
    /// range couldn't be accessed. Always succeeds with n==0.
    #[no_mangle]
    pub extern "C-unwind" fn memorymanager_readPtr(
        mem: *const MemoryManager,
        dst: *mut c_void,
        src: UntypedForeignPtr,
        n: usize,
    ) -> i32 {
        let mem = unsafe { mem.as_ref() }.unwrap();
        let src = ForeignArrayPtr::new(src.cast::<u8>(), n);
        let dst = unsafe { std::slice::from_raw_parts_mut(notnull_mut_debug(dst) as *mut u8, n) };

        match mem.copy_from_ptr(dst, src) {
            Ok(_) => 0,
            Err(e) => {
                trace!("Couldn't read {:?} into {:?}: {:?}", src, dst, e);
                e.to_negated_i32()
            }
        }
    }

    /// Copy `n` bytes from `src` to `dst`. Returns 0 on success or -EFAULT if any of the specified
    /// range couldn't be accessed. The write is flushed immediately.
    #[no_mangle]
    pub unsafe extern "C-unwind" fn memorymanager_writePtr(
        mem: *mut MemoryManager,
        dst: UntypedForeignPtr,
        src: *const c_void,
        n: usize,
    ) -> i32 {
        let mem = unsafe { mem.as_mut() }.unwrap();
        let dst = ForeignArrayPtr::new(dst.cast::<u8>(), n);
        let src = unsafe { std::slice::from_raw_parts(notnull_debug(src) as *const u8, n) };
        match mem.copy_to_ptr(dst, src) {
            Ok(_) => 0,
            Err(e) => {
                trace!("Couldn't write {:?} into {:?}: {:?}", src, dst, e);
                e.to_negated_i32()
            }
        }
    }
}