petgraph/
acyclic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
//! A wrapper around graph types that enforces an acyclicity invariant.

use std::{
    cell::RefCell,
    cmp::Ordering,
    collections::{BTreeMap, BTreeSet},
    convert::TryFrom,
    ops::{Deref, RangeBounds},
};

use crate::{
    adj::IndexType,
    algo::Cycle,
    data::{Build, Create, DataMap, DataMapMut},
    graph::NodeIndex,
    prelude::DiGraph,
    visit::{
        dfs_visitor, Control, Data, DfsEvent, EdgeCount, EdgeIndexable, GetAdjacencyMatrix,
        GraphBase, GraphProp, IntoEdgeReferences, IntoEdges, IntoEdgesDirected, IntoNeighbors,
        IntoNeighborsDirected, IntoNodeIdentifiers, IntoNodeReferences, NodeCompactIndexable,
        NodeCount, NodeIndexable, Reversed, Time, Visitable,
    },
    Direction,
};

#[cfg(feature = "stable_graph")]
use crate::stable_graph::StableDiGraph;

mod order_map;
use fixedbitset::FixedBitSet;
use order_map::OrderMap;
pub use order_map::TopologicalPosition;

/// A directed acyclic graph.
///
/// Wrap directed acyclic graphs and expose an API that ensures the invariant
/// is maintained, i.e. no cycles can be created. This uses a topological order
/// that is dynamically updated when edges are added. In the worst case, the
/// runtime may be linear in the number of vertices, but it has been shown to
/// be fast in practice, particularly on sparse graphs (Pierce and Kelly, 2004).
///
/// To be modifiable (and hence to be useful), the graphs of generic type `G`
/// should implement the [`Build`] trait. Good candidates for `G` are thus
/// [`crate::graph::DiGraph`] and [`crate::stable_graph::StableDiGraph`].
///
/// ## Algorithm
/// This implements the PK algorithm for dynamic topological sort described in
/// "A Dynamic Topological Sort Algorithm for Directed Acyclic Graphs" by
/// D. Pierce and P. Kelly, JEA, 2004. It maintains a topological order of the
/// nodes that can be efficiently updated when edges are added. Achieves a good
/// balance between simplicity and performance in practice, see the paper for
/// discussions of the running time.
///
/// ## Graph traits
/// All graph traits are delegated to the inner graph, with the exception of
/// the graph construction trait [`Build`]. The wrapped graph can thus only
/// be modified through the wrapped API that ensures no cycles are created.
///
/// ## Behaviour on cycles
/// By design, edge additions to this datatype may fail. It is recommended to
/// prefer the dedicated [`Acyclic::try_add_edge`] and
/// [`Acyclic::try_update_edge`] methods whenever possible. The
/// [`Build::update_edge`] methods will panic if it is attempted to add an edge
/// that would create a cycle. The [`Build::add_edge`] on the other hand method
/// will return `None` if the edge cannot be added (either it already exists on
/// a graph type that does not support it or would create a cycle).
#[derive(Clone, Debug)]
pub struct Acyclic<G: Visitable> {
    /// The underlying graph, accessible through the `inner` method.
    graph: G,
    /// The current topological order of the nodes.
    order_map: OrderMap<G::NodeId>,

    // We fix the internal DFS maps to FixedBitSet instead of G::VisitMap to do
    // faster resets (by just setting bits to false)
    /// Helper map for DFS tracking discovered nodes.
    discovered: RefCell<FixedBitSet>,
    /// Helper map for DFS tracking finished nodes.
    finished: RefCell<FixedBitSet>,
}

/// An error that can occur during edge addition for acyclic graphs.
#[derive(Clone, Debug, PartialEq)]
pub enum AcyclicEdgeError<N> {
    /// The edge would create a cycle.
    Cycle(Cycle<N>),
    /// The edge would create a self-loop.
    SelfLoop,
    /// Could not successfully add the edge to the underlying graph.
    InvalidEdge,
}

impl<N> From<Cycle<N>> for AcyclicEdgeError<N> {
    fn from(cycle: Cycle<N>) -> Self {
        AcyclicEdgeError::Cycle(cycle)
    }
}

impl<G: Visitable> Acyclic<G> {
    /// Create a new empty acyclic graph.
    pub fn new() -> Self
    where
        G: Default,
    {
        Default::default()
    }

    /// Get an iterator over the nodes, ordered by their position.
    pub fn nodes_iter(&self) -> impl Iterator<Item = G::NodeId> + '_ {
        self.order_map.nodes_iter()
    }

    /// Get an iterator over the nodes within the range of positions.
    ///
    /// The nodes are ordered by their position in the topological sort.
    pub fn range<'r>(
        &'r self,
        range: impl RangeBounds<TopologicalPosition> + 'r,
    ) -> impl Iterator<Item = G::NodeId> + 'r {
        self.order_map.range(range)
    }

    /// Get the underlying graph.
    pub fn inner(&self) -> &G {
        &self.graph
    }

    /// Get the underlying graph mutably.
    ///
    /// This cannot be public because it might break the acyclicity invariant.
    fn inner_mut(&mut self) -> &mut G {
        &mut self.graph
    }

    /// Consume the `Acyclic` wrapper and return the underlying graph.
    pub fn into_inner(self) -> G {
        self.graph
    }
}

impl<G: Visitable + NodeIndexable> Acyclic<G>
where
    for<'a> &'a G: IntoNeighborsDirected + IntoNodeIdentifiers + GraphBase<NodeId = G::NodeId>,
{
    /// Wrap a graph into an acyclic graph.
    ///
    /// The graph types [`DiGraph`] and [`StableDiGraph`] also implement
    /// [`TryFrom`], which can be used instead of this method and have looser
    /// type bounds.
    pub fn try_from_graph(graph: G) -> Result<Self, Cycle<G::NodeId>> {
        let order_map = OrderMap::try_from_graph(&graph)?;
        let discovered = RefCell::new(FixedBitSet::with_capacity(graph.node_bound()));
        let finished = RefCell::new(FixedBitSet::with_capacity(graph.node_bound()));
        Ok(Self {
            graph,
            order_map,
            discovered,
            finished,
        })
    }

    /// Add an edge to the graph using [`Build::add_edge`].
    ///
    /// Returns the id of the added edge, or an [`AcyclicEdgeError`] if the edge
    /// would create a cycle, a self-loop or if the edge addition failed in
    /// the underlying graph.
    ///
    /// In cases where edge addition cannot fail in the underlying graph (e.g.
    /// when multi-edges are allowed, as in [`DiGraph`] and [`StableDiGraph`]),
    /// this will return an error if and only if [`Self::is_valid_edge`]
    /// returns `false`.
    pub fn try_add_edge(
        &mut self,
        a: G::NodeId,
        b: G::NodeId,
        weight: G::EdgeWeight,
    ) -> Result<G::EdgeId, AcyclicEdgeError<G::NodeId>>
    where
        G: Build,
        G::NodeId: IndexType,
    {
        if a == b {
            // No self-loops allowed
            return Err(AcyclicEdgeError::SelfLoop);
        }
        self.update_ordering(a, b)?;
        self.graph
            .add_edge(a, b, weight)
            .ok_or(AcyclicEdgeError::InvalidEdge)
    }

    /// Update an edge in a graph using [`Build::update_edge`].
    ///
    /// Returns the id of the updated edge, or an [`AcyclicEdgeError`] if the edge
    /// would create a cycle or a self-loop. If the edge does not exist, the
    /// edge is created.
    ///
    /// This will return an error if and only if [`Self::is_valid_edge`] returns
    /// `false`.
    pub fn try_update_edge(
        &mut self,
        a: G::NodeId,
        b: G::NodeId,
        weight: G::EdgeWeight,
    ) -> Result<G::EdgeId, AcyclicEdgeError<G::NodeId>>
    where
        G: Build,
        G::NodeId: IndexType,
    {
        if a == b {
            // No self-loops allowed
            return Err(AcyclicEdgeError::SelfLoop);
        }
        self.update_ordering(a, b)?;
        Ok(self.graph.update_edge(a, b, weight))
    }

    /// Check if an edge would be valid, i.e. adding it would not create a cycle.
    pub fn is_valid_edge(&self, a: G::NodeId, b: G::NodeId) -> bool
    where
        G::NodeId: IndexType,
    {
        if a == b {
            false // No self-loops
        } else if self.get_position(a) < self.get_position(b) {
            true // valid edge in the current topological order
        } else {
            // Check if the future of `b` is disjoint from the past of `a`
            // (in which case the topological order could be adjusted)
            self.causal_cones(b, a).is_ok()
        }
    }

    /// Update the ordering of the nodes in the order map resulting from adding an
    /// edge a -> b.
    ///
    /// If a cycle is detected, an error is returned and `self` remains unchanged.
    ///
    /// Implements the core update logic of the PK algorithm.
    fn update_ordering(&mut self, a: G::NodeId, b: G::NodeId) -> Result<(), Cycle<G::NodeId>>
    where
        G::NodeId: IndexType,
    {
        let min_order = self.get_position(b);
        let max_order = self.get_position(a);
        if min_order >= max_order {
            // Order is already correct
            return Ok(());
        }

        // Get the nodes reachable from `b` and the nodes that can reach `a`
        // between `min_order` and `max_order`
        let (b_fut, a_past) = self.causal_cones(b, a)?;

        // Now reorder of nodes in a_past and b_fut such that
        //  i) within each vec, the nodes are in topological order,
        // ii) all elements of b_fut come before all elements of a_past in the new order.
        let all_positions: BTreeSet<_> = b_fut.keys().chain(a_past.keys()).copied().collect();
        let all_nodes = a_past.values().chain(b_fut.values()).copied();

        debug_assert_eq!(all_positions.len(), b_fut.len() + a_past.len());

        for (pos, node) in all_positions.into_iter().zip(all_nodes) {
            self.order_map.set_position(node, pos, &self.graph);
        }
        Ok(())
    }

    /// Use DFS to find the future causal cone of `min_node` and the past causal
    /// cone of `max_node`.
    ///
    /// The cones are trimmed to the range `[min_order, max_order]`. The cones
    /// are returned if they are disjoint. Otherwise, a [`Cycle`] error is returned.
    ///
    /// If `return_result` is false, then the cones are not constructed and the
    /// method only checks for disjointness.
    #[allow(clippy::type_complexity)]
    fn causal_cones(
        &self,
        min_node: G::NodeId,
        max_node: G::NodeId,
    ) -> Result<
        (
            BTreeMap<TopologicalPosition, G::NodeId>,
            BTreeMap<TopologicalPosition, G::NodeId>,
        ),
        Cycle<G::NodeId>,
    >
    where
        G::NodeId: IndexType,
    {
        debug_assert!(self.discovered.borrow().is_clear());
        debug_assert!(self.finished.borrow().is_clear());

        let min_order = self.get_position(min_node);
        let max_order = self.get_position(max_node);

        // Prepare DFS scratch space: make sure the maps have enough capacity
        if self.discovered.borrow().len() < self.graph.node_bound() {
            self.discovered.borrow_mut().grow(self.graph.node_bound());
            self.finished.borrow_mut().grow(self.graph.node_bound());
        }

        // Get all nodes reachable from b with min_order <= order < max_order
        let mut forward_cone = BTreeMap::new();
        let mut backward_cone = BTreeMap::new();

        // The main logic: run DFS twice. We run this in a closure to catch
        // errors and reset the maps properly at the end.
        let mut run_dfs = || {
            // Get all nodes reachable from min_node with min_order < order <= max_order
            self.future_cone(min_node, min_order, max_order, &mut forward_cone)?;

            // Get all nodes that can reach a with min_order < order <= max_order
            // These are disjoint from the nodes in the forward cone, otherwise
            // we would have a cycle.
            self.past_cone(max_node, min_order, max_order, &mut backward_cone)
                .expect("cycles already detected in future_cone");

            Ok(())
        };

        let success = run_dfs();

        // Cleanup: reset map to 0. This is faster than a full reset, especially
        // on large sparse graphs.
        for &v in forward_cone.values().chain(backward_cone.values()) {
            self.discovered.borrow_mut().set(v.index(), false);
            self.finished.borrow_mut().set(v.index(), false);
        }
        debug_assert!(self.discovered.borrow().is_clear());
        debug_assert!(self.finished.borrow().is_clear());

        match success {
            Ok(()) => Ok((forward_cone, backward_cone)),
            Err(cycle) => Err(cycle),
        }
    }

    fn future_cone(
        &self,
        start: G::NodeId,
        min_position: TopologicalPosition,
        max_position: TopologicalPosition,
        res: &mut BTreeMap<TopologicalPosition, G::NodeId>,
    ) -> Result<(), Cycle<G::NodeId>>
    where
        G::NodeId: IndexType,
    {
        dfs(
            &self.graph,
            start,
            &self.order_map,
            |order| {
                debug_assert!(order >= min_position, "invalid topological order");
                match order.cmp(&max_position) {
                    Ordering::Less => Ok(true),           // node within [min_node, max_node]
                    Ordering::Equal => Err(Cycle(start)), // cycle!
                    Ordering::Greater => Ok(false),       // node beyond [min_node, max_node]
                }
            },
            res,
            &mut self.discovered.borrow_mut(),
            &mut self.finished.borrow_mut(),
        )
    }

    fn past_cone(
        &self,
        start: G::NodeId,
        min_position: TopologicalPosition,
        max_position: TopologicalPosition,
        res: &mut BTreeMap<TopologicalPosition, G::NodeId>,
    ) -> Result<(), Cycle<G::NodeId>>
    where
        G::NodeId: IndexType,
    {
        dfs(
            Reversed(&self.graph),
            start,
            &self.order_map,
            |order| {
                debug_assert!(order <= max_position, "invalid topological order");
                match order.cmp(&min_position) {
                    Ordering::Less => Ok(false), // node beyond [min_node, max_node]
                    Ordering::Equal => panic!("found by future_cone"), // cycle!
                    Ordering::Greater => Ok(true), // node within [min_node, max_node]
                }
            },
            res,
            &mut self.discovered.borrow_mut(),
            &mut self.finished.borrow_mut(),
        )
    }
}

impl<G: Visitable> GraphBase for Acyclic<G> {
    type NodeId = G::NodeId;
    type EdgeId = G::EdgeId;
}

impl<G: Default + Visitable> Default for Acyclic<G> {
    fn default() -> Self {
        let graph: G = Default::default();
        let order_map = Default::default();
        let discovered = RefCell::new(FixedBitSet::default());
        let finished = RefCell::new(FixedBitSet::default());
        Self {
            graph,
            order_map,
            discovered,
            finished,
        }
    }
}

impl<G: Build + Visitable + NodeIndexable> Build for Acyclic<G>
where
    for<'a> &'a G: IntoNeighborsDirected
        + IntoNodeIdentifiers
        + Visitable<Map = G::Map>
        + GraphBase<NodeId = G::NodeId>,
    G::NodeId: IndexType,
{
    fn add_node(&mut self, weight: Self::NodeWeight) -> Self::NodeId {
        let n = self.graph.add_node(weight);
        self.order_map.add_node(n, &self.graph);
        n
    }

    fn add_edge(
        &mut self,
        a: Self::NodeId,
        b: Self::NodeId,
        weight: Self::EdgeWeight,
    ) -> Option<Self::EdgeId> {
        self.try_add_edge(a, b, weight).ok()
    }

    fn update_edge(
        &mut self,
        a: Self::NodeId,
        b: Self::NodeId,
        weight: Self::EdgeWeight,
    ) -> Self::EdgeId {
        self.try_update_edge(a, b, weight).unwrap()
    }
}

impl<G: Create + Visitable + NodeIndexable> Create for Acyclic<G>
where
    for<'a> &'a G: IntoNeighborsDirected
        + IntoNodeIdentifiers
        + Visitable<Map = G::Map>
        + GraphBase<NodeId = G::NodeId>,
    G::NodeId: IndexType,
{
    fn with_capacity(nodes: usize, edges: usize) -> Self {
        let graph = G::with_capacity(nodes, edges);
        let order_map = OrderMap::with_capacity(nodes);
        let discovered = FixedBitSet::with_capacity(nodes);
        let finished = FixedBitSet::with_capacity(nodes);
        Self {
            graph,
            order_map,
            discovered: RefCell::new(discovered),
            finished: RefCell::new(finished),
        }
    }
}

impl<G: Visitable> Deref for Acyclic<G> {
    type Target = G;

    fn deref(&self) -> &Self::Target {
        &self.graph
    }
}

/// Traverse nodes in `graph` in DFS order, starting from `start`, for as long
/// as the predicate `valid_order` returns `true` on the current node's order.
fn dfs<G: NodeIndexable + IntoNeighborsDirected + IntoNodeIdentifiers + Visitable>(
    graph: G,
    start: G::NodeId,
    order_map: &OrderMap<G::NodeId>,
    // A predicate that returns whether to continue the search from a node,
    // or an error to stop and shortcircuit the search.
    mut valid_order: impl FnMut(TopologicalPosition) -> Result<bool, Cycle<G::NodeId>>,
    res: &mut BTreeMap<TopologicalPosition, G::NodeId>,
    discovered: &mut FixedBitSet,
    finished: &mut FixedBitSet,
) -> Result<(), Cycle<G::NodeId>>
where
    G::NodeId: IndexType,
{
    dfs_visitor(
        graph,
        start,
        &mut |ev| -> Result<Control<()>, Cycle<G::NodeId>> {
            match ev {
                DfsEvent::Discover(u, _) => {
                    // We are visiting u
                    let order = order_map.get_position(u, &graph);
                    res.insert(order, u);
                    Ok(Control::Continue)
                }
                DfsEvent::TreeEdge(_, u) => {
                    // Should we visit u?
                    let order = order_map.get_position(u, &graph);
                    match valid_order(order) {
                        Ok(true) => Ok(Control::Continue),
                        Ok(false) => Ok(Control::Prune),
                        Err(cycle) => Err(cycle),
                    }
                }
                _ => Ok(Control::Continue),
            }
        },
        discovered,
        finished,
        &mut Time::default(),
    )?;

    Ok(())
}

/////////////////////// Pass-through graph traits ///////////////////////
// We implement all the following traits by delegating to the inner graph:
// - Data
// - DataMap
// - DataMapMut
// - EdgeCount
// - EdgeIndexable
// - GetAdjacencyMatrix
// - GraphProp
// - NodeCompactIndexable
// - NodeCount
// - NodeIndexable
// - Visitable
//
// Furthermore, we also implement the `remove_node` and `remove_edge` methods,
// as well as the following traits for `DiGraph` and `StableDiGraph` (these
// are hard/impossible to implement generically):
// - TryFrom
// - IntoEdgeReferences
// - IntoEdges
// - IntoEdgesDirected
// - IntoNeighbors
// - IntoNeighborsDirected
// - IntoNodeIdentifiers
// - IntoNodeReferences

impl<G: Visitable + Data> Data for Acyclic<G> {
    type NodeWeight = G::NodeWeight;
    type EdgeWeight = G::EdgeWeight;
}

impl<G: Visitable + DataMap> DataMap for Acyclic<G> {
    fn node_weight(&self, id: Self::NodeId) -> Option<&Self::NodeWeight> {
        self.inner().node_weight(id)
    }

    fn edge_weight(&self, id: Self::EdgeId) -> Option<&Self::EdgeWeight> {
        self.inner().edge_weight(id)
    }
}

impl<G: Visitable + DataMapMut> DataMapMut for Acyclic<G> {
    fn node_weight_mut(&mut self, id: Self::NodeId) -> Option<&mut Self::NodeWeight> {
        self.inner_mut().node_weight_mut(id)
    }

    fn edge_weight_mut(&mut self, id: Self::EdgeId) -> Option<&mut Self::EdgeWeight> {
        self.inner_mut().edge_weight_mut(id)
    }
}

impl<G: Visitable + EdgeCount> EdgeCount for Acyclic<G> {
    fn edge_count(&self) -> usize {
        self.inner().edge_count()
    }
}

impl<G: Visitable + EdgeIndexable> EdgeIndexable for Acyclic<G> {
    fn edge_bound(&self) -> usize {
        self.inner().edge_bound()
    }

    fn to_index(&self, a: Self::EdgeId) -> usize {
        self.inner().to_index(a)
    }

    fn from_index(&self, i: usize) -> Self::EdgeId {
        self.inner().from_index(i)
    }
}

impl<G: Visitable + GetAdjacencyMatrix> GetAdjacencyMatrix for Acyclic<G> {
    type AdjMatrix = G::AdjMatrix;

    fn adjacency_matrix(&self) -> Self::AdjMatrix {
        self.inner().adjacency_matrix()
    }

    fn is_adjacent(&self, matrix: &Self::AdjMatrix, a: Self::NodeId, b: Self::NodeId) -> bool {
        self.inner().is_adjacent(matrix, a, b)
    }
}

impl<G: Visitable + GraphProp> GraphProp for Acyclic<G> {
    type EdgeType = G::EdgeType;
}

impl<G: Visitable + NodeCompactIndexable> NodeCompactIndexable for Acyclic<G> {}

impl<G: Visitable + NodeCount> NodeCount for Acyclic<G> {
    fn node_count(&self) -> usize {
        self.inner().node_count()
    }
}

impl<G: Visitable + NodeIndexable> NodeIndexable for Acyclic<G> {
    fn node_bound(&self) -> usize {
        self.inner().node_bound()
    }

    fn to_index(&self, a: Self::NodeId) -> usize {
        self.inner().to_index(a)
    }

    fn from_index(&self, i: usize) -> Self::NodeId {
        self.inner().from_index(i)
    }
}

impl<G: Visitable> Visitable for Acyclic<G> {
    type Map = G::Map;

    fn visit_map(&self) -> Self::Map {
        self.inner().visit_map()
    }

    fn reset_map(&self, map: &mut Self::Map) {
        self.inner().reset_map(map)
    }
}

macro_rules! impl_graph_traits {
    ($graph_type:ident) => {
        // Remove edge and node methods (not available through traits)
        impl<N, E, Ix: IndexType> Acyclic<$graph_type<N, E, Ix>> {
            /// Remove an edge and return its edge weight, or None if it didn't exist.
            ///
            /// Pass through to underlying graph.
            pub fn remove_edge(
                &mut self,
                e: <$graph_type<N, E, Ix> as GraphBase>::EdgeId,
            ) -> Option<E> {
                self.graph.remove_edge(e)
            }

            /// Remove a node from the graph if it exists, and return its
            /// weight. If it doesn't exist in the graph, return None.
            ///
            /// This updates the order in O(v) runtime and removes the node in
            /// the underlying graph.
            pub fn remove_node(
                &mut self,
                n: <$graph_type<N, E, Ix> as GraphBase>::NodeId,
            ) -> Option<N> {
                self.order_map.remove_node(n, &self.graph);
                self.graph.remove_node(n)
            }
        }

        impl<N, E, Ix: IndexType> TryFrom<$graph_type<N, E, Ix>>
            for Acyclic<$graph_type<N, E, Ix>>
        {
            type Error = Cycle<NodeIndex<Ix>>;

            fn try_from(graph: $graph_type<N, E, Ix>) -> Result<Self, Self::Error> {
                let order_map = OrderMap::try_from_graph(&graph)?;
                let discovered = RefCell::new(FixedBitSet::with_capacity(graph.node_bound()));
                let finished = RefCell::new(FixedBitSet::with_capacity(graph.node_bound()));
                Ok(Self {
                    graph,
                    order_map,
                    discovered,
                    finished,
                })
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoEdgeReferences for &'a Acyclic<$graph_type<N, E, Ix>> {
            type EdgeRef = <&'a $graph_type<N, E, Ix> as IntoEdgeReferences>::EdgeRef;
            type EdgeReferences = <&'a $graph_type<N, E, Ix> as IntoEdgeReferences>::EdgeReferences;

            fn edge_references(self) -> Self::EdgeReferences {
                self.inner().edge_references()
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoEdges for &'a Acyclic<$graph_type<N, E, Ix>> {
            type Edges = <&'a $graph_type<N, E, Ix> as IntoEdges>::Edges;

            fn edges(self, a: Self::NodeId) -> Self::Edges {
                self.inner().edges(a)
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoEdgesDirected for &'a Acyclic<$graph_type<N, E, Ix>> {
            type EdgesDirected = <&'a $graph_type<N, E, Ix> as IntoEdgesDirected>::EdgesDirected;

            fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected {
                self.inner().edges_directed(a, dir)
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoNeighbors for &'a Acyclic<$graph_type<N, E, Ix>> {
            type Neighbors = <&'a $graph_type<N, E, Ix> as IntoNeighbors>::Neighbors;

            fn neighbors(self, a: Self::NodeId) -> Self::Neighbors {
                self.inner().neighbors(a)
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoNeighborsDirected for &'a Acyclic<$graph_type<N, E, Ix>> {
            type NeighborsDirected =
                <&'a $graph_type<N, E, Ix> as IntoNeighborsDirected>::NeighborsDirected;

            fn neighbors_directed(self, n: Self::NodeId, d: Direction) -> Self::NeighborsDirected {
                self.inner().neighbors_directed(n, d)
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoNodeIdentifiers for &'a Acyclic<$graph_type<N, E, Ix>> {
            type NodeIdentifiers =
                <&'a $graph_type<N, E, Ix> as IntoNodeIdentifiers>::NodeIdentifiers;

            fn node_identifiers(self) -> Self::NodeIdentifiers {
                self.inner().node_identifiers()
            }
        }

        impl<'a, N, E, Ix: IndexType> IntoNodeReferences for &'a Acyclic<$graph_type<N, E, Ix>> {
            type NodeRef = <&'a $graph_type<N, E, Ix> as IntoNodeReferences>::NodeRef;
            type NodeReferences = <&'a $graph_type<N, E, Ix> as IntoNodeReferences>::NodeReferences;

            fn node_references(self) -> Self::NodeReferences {
                self.inner().node_references()
            }
        }
    };
}

impl_graph_traits!(DiGraph);
#[cfg(feature = "stable_graph")]
impl_graph_traits!(StableDiGraph);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::prelude::DiGraph;
    #[cfg(feature = "stable_graph")]
    use crate::prelude::StableDiGraph;
    use crate::visit::IntoNodeReferences;

    #[test]
    fn test_acyclic_graph() {
        // Create an acyclic DiGraph
        let mut graph = DiGraph::<(), ()>::new();
        let a = graph.add_node(());
        let c = graph.add_node(());
        let b = graph.add_node(());
        graph.add_edge(a, b, ());
        graph.add_edge(b, c, ());

        // Create an Acyclic object
        let mut acyclic = Acyclic::try_from_graph(graph).unwrap();

        // Test initial topological order
        assert_valid_topological_order(&acyclic);

        // Add a valid edge
        assert!(acyclic.try_add_edge(a, c, ()).is_ok());
        assert_valid_topological_order(&acyclic);

        // Try to add an edge that would create a cycle
        assert!(acyclic.try_add_edge(c, a, ()).is_err());

        // Add another valid edge
        let d = acyclic.add_node(());
        assert!(acyclic.try_add_edge(c, d, ()).is_ok());
        assert_valid_topological_order(&acyclic);

        // Try to add an edge that would create a cycle (using the Build trait)
        assert!(acyclic.add_edge(d, a, ()).is_none());
    }

    #[cfg(feature = "stable_graph")]
    #[test]
    fn test_acyclic_graph_add_remove() {
        // Create an initial Acyclic graph with two nodes and one edge
        let mut acyclic = Acyclic::<StableDiGraph<(), ()>>::new();
        let a = acyclic.add_node(());
        let b = acyclic.add_node(());
        assert!(acyclic.try_add_edge(a, b, ()).is_ok());

        // Check initial topological order
        assert_valid_topological_order(&acyclic);

        // Add a new node and an edge
        let c = acyclic.add_node(());
        assert!(acyclic.try_add_edge(b, c, ()).is_ok());

        // Check topological order after addition
        assert_valid_topological_order(&acyclic);

        // Remove the node connected to two edges (node b)
        acyclic.remove_node(b);

        // Check topological order after removal
        assert_valid_topological_order(&acyclic);

        // Verify the remaining structure
        let remaining_nodes: Vec<_> = acyclic
            .inner()
            .node_references()
            .map(|(id, _)| id)
            .collect();
        assert_eq!(remaining_nodes.len(), 2);
        assert!(remaining_nodes.contains(&a));
        assert!(remaining_nodes.contains(&c));
        assert!(!acyclic.inner().contains_edge(a, c));
    }

    fn assert_valid_topological_order<'a, G>(acyclic: &'a Acyclic<G>)
    where
        G: Visitable + NodeCount + NodeIndexable,
        &'a G: NodeIndexable
            + IntoNodeReferences
            + IntoNeighborsDirected
            + GraphBase<NodeId = G::NodeId>,
        G::NodeId: std::fmt::Debug,
    {
        let ordered_nodes: Vec<_> = acyclic.nodes_iter().collect();
        assert_eq!(ordered_nodes.len(), acyclic.node_count());
        let nodes: Vec<_> = acyclic.inner().node_identifiers().collect();

        // Check that the nodes are in topological order
        let mut last_position = None;
        for (idx, &node) in ordered_nodes.iter().enumerate() {
            assert!(nodes.contains(&node));

            // Check that the node positions are monotonically increasing
            let pos = acyclic.get_position(node);
            assert!(Some(pos) > last_position);
            last_position = Some(pos);

            // Check that the neighbors are in the future of the current node
            for neighbor in acyclic.inner().neighbors(node) {
                let neighbour_idx = ordered_nodes.iter().position(|&n| n == neighbor).unwrap();
                assert!(neighbour_idx > idx);
            }
        }
    }
}