scheduler/pools/unbounded.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
// When comparing a loaded value that happens to be bool,
// assert_eq! reads better than assert!.
#![allow(clippy::bool_assert_comparison)]
use std::marker::PhantomData;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use atomic_refcell::AtomicRefCell;
use crate::sync::count_down_latch::{self, build_count_down_latch};
use crate::sync::simple_latch;
// If making substantial changes to this scheduler, you should verify the compilation error message
// for each test at the end of this file to make sure that they correctly cause the expected
// compilation error. This work pool unsafely transmutes the task closure lifetime, and the
// commented tests are meant to make sure that the work pool does not allow unsound code to compile.
// Due to lifetime sub-typing/variance, rust will sometimes allow closures with shorter or longer
// lifetimes than we specify in the API, so the tests check to make sure the closures are invariant
// over the lifetime and that the usage is sound.
/// A task that is run by the pool threads.
pub trait TaskFn: Fn(usize) + Send + Sync {}
impl<T> TaskFn for T where T: Fn(usize) + Send + Sync {}
/// A thread pool that runs a task on many threads. A task will run once on each thread.
pub struct UnboundedThreadPool {
/// Handles for joining threads when they've exited.
thread_handles: Vec<std::thread::JoinHandle<()>>,
/// State shared between all threads.
shared_state: Arc<SharedState>,
/// A latch that is opened when the task is set. Indicates to the threads that they should start
/// running the task.
task_start_latch: simple_latch::Latch,
/// The main thread uses this to wait for the threads to finish running the task.
task_end_waiter: count_down_latch::LatchWaiter,
}
pub struct SharedState {
/// The task to run during the next round.
task: AtomicRefCell<Option<Box<dyn TaskFn>>>,
/// Has a thread panicked?
has_thread_panicked: AtomicBool,
}
impl UnboundedThreadPool {
pub fn new(num_threads: usize, thread_name: &str, yield_spin: bool) -> Self {
let shared_state = Arc::new(SharedState {
task: AtomicRefCell::new(None),
has_thread_panicked: AtomicBool::new(false),
});
let (task_end_counter, task_end_waiter) = build_count_down_latch();
let mut task_start_latch = simple_latch::Latch::new();
let mut thread_handles = Vec::new();
for i in 0..num_threads {
let shared_state_clone = Arc::clone(&shared_state);
// enabling spinning on the threads may improve performance under some conditions
// (see https://github.com/shadow/shadow/issues/2877)
let task_start_waiter = task_start_latch.waiter(yield_spin);
let task_end_counter_clone = task_end_counter.clone();
let handle = std::thread::Builder::new()
.name(thread_name.to_string())
.spawn(move || {
work_loop(
i,
shared_state_clone,
task_start_waiter,
task_end_counter_clone,
)
})
.unwrap();
thread_handles.push(handle);
}
Self {
thread_handles,
shared_state,
task_start_latch,
task_end_waiter,
}
}
/// Stop and join the threads.
pub fn join(self) {
// the drop handler will join the threads
}
fn join_internal(&mut self) {
// a `None` indicates that the threads should end
assert!(self.shared_state.task.borrow().is_none());
// only check the thread join return value if no threads have yet panicked
let check_for_errors = !self
.shared_state
.has_thread_panicked
.load(Ordering::Relaxed);
// start the threads
self.task_start_latch.open();
for handle in self.thread_handles.drain(..) {
let result = handle.join();
if check_for_errors {
result.expect("A thread panicked while stopping");
}
}
}
/// Create a new scope for the pool. The scope will ensure that any task run on the pool within
/// this scope has completed before leaving the scope.
//
// SAFETY: This works because:
//
// 1. WorkerScope<'scope> is covariant over 'scope.
// 2. TaskRunner<'a, 'scope> is invariant over WorkerScope<'scope>, so TaskRunner<'a, 'scope>
// is invariant over 'scope.
// 3. FnOnce(TaskRunner<'a, 'scope>) is contravariant over TaskRunner<'a, 'scope>, so
// FnOnce(TaskRunner<'a, 'scope>) is invariant over 'scope.
//
// This means that the provided scope closure cannot take a TaskRunner<'a, 'scope2> where
// 'scope2 is shorter than 'scope, and therefore 'scope must be as long as this function call.
//
// If TaskRunner<'a, 'scope> was covariant over 'scope, then FnOnce(TaskRunner<'a, 'scope>)
// would have been contravariant over 'scope. This would have allowed the user to provide a
// scope closure that could take a TaskRunner<'a, 'scope2> where 'scope2 is shorter than 'scope.
// Then when TaskRunner<'a, 'scope2>::run(...) would eventually be called, the run closure would
// capture data with a lifetime of only 'scope2, which would be a shorter lifetime than the
// scope closure's lifetime of 'scope. Then, any captured mutable references would be accessible
// from both the run closure and the scope closure, leading to mutable aliasing.
pub fn scope<'scope>(
&'scope mut self,
f: impl for<'a> FnOnce(TaskRunner<'a, 'scope>) + 'scope,
) {
assert!(
!self
.shared_state
.has_thread_panicked
.load(Ordering::Relaxed),
"Attempting to use a workpool that previously panicked"
);
// makes sure that the task is properly cleared even if 'f' panics
let mut scope = WorkerScope::<'scope> {
pool: self,
_phantom: Default::default(),
};
let runner = TaskRunner { scope: &mut scope };
f(runner);
}
}
impl std::ops::Drop for UnboundedThreadPool {
fn drop(&mut self) {
self.join_internal();
}
}
struct WorkerScope<'scope> {
pool: &'scope mut UnboundedThreadPool,
// when we are dropped, it's like dropping the task
_phantom: PhantomData<Box<dyn TaskFn + 'scope>>,
}
impl std::ops::Drop for WorkerScope<'_> {
fn drop(&mut self) {
// if the task was set (if `TaskRunner::run` was called)
if self.pool.shared_state.task.borrow().is_some() {
// wait for the task to complete
self.pool.task_end_waiter.wait();
// clear the task
*self.pool.shared_state.task.borrow_mut() = None;
// generally following https://docs.rs/rayon/latest/rayon/fn.scope.html#panics
if self
.pool
.shared_state
.has_thread_panicked
.load(Ordering::Relaxed)
{
// we could store the thread's panic message and propagate it, but I don't think
// that's worth handling
panic!("A work thread panicked");
}
}
}
}
/// Allows a single task to run per pool scope.
pub struct TaskRunner<'a, 'scope> {
// SAFETY: Self must be invariant over 'scope, which is why we use &mut here. See the
// documentation for scope() above for details.
scope: &'a mut WorkerScope<'scope>,
}
impl<'scope> TaskRunner<'_, 'scope> {
/// Run a task on the pool's threads.
pub fn run(self, f: impl TaskFn + 'scope) {
let f = Box::new(f);
// SAFETY: WorkerScope will drop this TaskFn before the end of 'scope
let f = unsafe {
std::mem::transmute::<Box<dyn TaskFn + 'scope>, Box<dyn TaskFn + 'static>>(f)
};
*self.scope.pool.shared_state.task.borrow_mut() = Some(f);
// we've set the task, so start the threads
self.scope.pool.task_start_latch.open();
}
}
fn work_loop(
thread_index: usize,
shared_state: Arc<SharedState>,
mut start_waiter: simple_latch::LatchWaiter,
mut end_counter: count_down_latch::LatchCounter,
) {
// we don't use `catch_unwind` here for two main reasons:
//
// 1. `catch_unwind` requires that the closure is `UnwindSafe`, which means that `TaskFn` also
// needs to be `UnwindSafe`. This is a big restriction on the types of tasks that we could run,
// since it requires that there's no interior mutability in the closure. rayon seems to get
// around this by wrapping the closure in `AssertUnwindSafe`, under the assumption that the
// panic will be propagated later with `resume_unwinding`, but this is a little more difficult
// to reason about compared to simply avoiding `catch_unwind` altogether.
// https://github.com/rayon-rs/rayon/blob/c571f8ffb4f74c8c09b4e1e6d9979b71b4414d07/rayon-core/src/unwind.rs#L9
//
// 2. There is a footgun with `catch_unwind` that could cause unexpected behaviour. If the
// closure called `panic_any()` with a type that has a Drop implementation, and that Drop
// implementation panics, it will cause a panic that is not caught by the `catch_unwind`,
// causing the thread to panic again with no chance to clean up properly. The work pool would
// then deadlock. Since we don't use `catch_unwind`, the thread will instead "panic when
// panicking" and abort, which is a more ideal outcome.
// https://github.com/rust-lang/rust/issues/86027
// this will poison the workpool when it's dropped
struct PoisonWhenDropped<'a>(&'a SharedState);
impl std::ops::Drop for PoisonWhenDropped<'_> {
fn drop(&mut self) {
// if we panicked, then inform other threads that we panicked and allow them to exit
// gracefully
self.0.has_thread_panicked.store(true, Ordering::Relaxed);
}
}
let shared_state = shared_state.as_ref();
let poison_when_dropped = PoisonWhenDropped(shared_state);
loop {
// wait for a new task
start_waiter.wait();
// scope used to make sure we drop the task before counting down
{
// run the task
match shared_state.task.borrow().deref() {
Some(task) => (task)(thread_index),
None => {
// received the sentinel value
break;
}
};
}
// SAFETY: we do not hold any references/borrows to the task at this time
end_counter.count_down();
}
// didn't panic, so forget the poison handler and return normally
std::mem::forget(poison_when_dropped);
}
#[cfg(any(test, doctest))]
mod tests {
use std::sync::atomic::{AtomicBool, AtomicU32};
use super::*;
#[test]
fn test_scope() {
let mut pool = UnboundedThreadPool::new(4, "worker", false);
let mut counter = 0u32;
for _ in 0..3 {
pool.scope(|_| {
counter += 1;
});
}
assert_eq!(counter, 3);
}
#[test]
fn test_run() {
let mut pool = UnboundedThreadPool::new(4, "worker", false);
let counter = AtomicU32::new(0);
for _ in 0..3 {
pool.scope(|s| {
s.run(|_| {
counter.fetch_add(1, Ordering::SeqCst);
});
});
}
assert_eq!(counter.load(Ordering::SeqCst), 12);
}
#[test]
fn test_large_num_threads() {
let mut pool = UnboundedThreadPool::new(100, "worker", false);
let counter = AtomicU32::new(0);
for _ in 0..3 {
pool.scope(|s| {
s.run(|_| {
counter.fetch_add(1, Ordering::SeqCst);
});
});
}
assert_eq!(counter.load(Ordering::SeqCst), 300);
}
#[test]
fn test_scope_runner_order() {
let mut pool = UnboundedThreadPool::new(1, "worker", false);
let flag = AtomicBool::new(false);
pool.scope(|s| {
s.run(|_| {
std::thread::sleep(std::time::Duration::from_millis(10));
flag.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
.unwrap();
});
assert_eq!(flag.load(Ordering::SeqCst), false);
});
assert_eq!(flag.load(Ordering::SeqCst), true);
}
#[test]
fn test_non_aliasing_borrows() {
let mut pool = UnboundedThreadPool::new(4, "worker", false);
let mut counter = 0;
pool.scope(|s| {
counter += 1;
s.run(|_| {
let _x = counter;
});
});
assert_eq!(counter, 1);
}
// should not compile: "cannot assign to `counter` because it is borrowed"
/// ```compile_fail
/// # use shadow_rs::core::scheduler::pools::unbounded::*;
/// let x = 5;
/// let mut pool = UnboundedThreadPool::new(4, "worker", false);
///
/// let mut counter = 0;
/// pool.scope(|s| {
/// s.run(|_| {
/// let _x = counter;
/// });
/// counter += 1;
/// });
///
/// assert_eq!(counter, 1);
/// ```
fn _test_aliasing_borrows() {}
#[test]
#[should_panic]
fn test_panic_all() {
let mut pool = UnboundedThreadPool::new(4, "worker", false);
pool.scope(|s| {
s.run(|i| {
// all threads panic
panic!("{}", i);
});
});
}
#[test]
#[should_panic]
fn test_panic_single() {
let mut pool = UnboundedThreadPool::new(4, "worker", false);
pool.scope(|s| {
s.run(|i| {
// one thread panics
if i == 2 {
panic!("{}", i);
}
});
});
}
// should not compile: "`x` does not live long enough"
/// ```compile_fail
/// # use shadow_rs::core::scheduler::pools::unbounded::*;
/// let mut pool = UnboundedThreadPool::new(4, "worker", false);
///
/// let x = 5;
/// pool.scope(|s| {
/// s.run(|_| {
/// std::panic::panic_any(&x);
/// });
/// });
/// ```
fn _test_panic_any() {}
// should not compile: "closure may outlive the current function, but it borrows `x`, which is
// owned by the current function"
/// ```compile_fail
/// # use shadow_rs::core::scheduler::pools::unbounded::*;
/// let mut pool = UnboundedThreadPool::new(4, "worker", false);
///
/// pool.scope(|s| {
/// // 'x' will be dropped when the closure is dropped, but 's' lives longer than that
/// let x = 5;
/// s.run(|_| {
/// let _x = x;
/// });
/// });
/// ```
fn _test_scope_lifetime() {}
#[test]
fn test_queues() {
let num_threads = 4;
let mut pool = UnboundedThreadPool::new(num_threads, "worker", false);
// a non-copy usize wrapper
struct Wrapper(usize);
let queues: Vec<_> = (0..num_threads)
.map(|_| crossbeam::queue::SegQueue::<Wrapper>::new())
.collect();
// queues[0] has Wrapper(0), queues[1] has Wrapper(1), etc
for (i, queue) in queues.iter().enumerate() {
queue.push(Wrapper(i));
}
let num_iters = 3;
for _ in 0..num_iters {
pool.scope(|s| {
s.run(|i: usize| {
// take item from queue n and push it to queue n+1
let wrapper = queues[i].pop().unwrap();
queues[(i + 1) % num_threads].push(wrapper);
});
});
}
for (i, queue) in queues.iter().enumerate() {
assert_eq!(
queue.pop().unwrap().0,
i.wrapping_sub(num_iters) % num_threads
);
}
}
}