rand_core/lib.rs
1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017-2018 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! Random number generation traits
11//!
12//! This crate is mainly of interest to crates publishing implementations of
13//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14//! which re-exports the main traits and error types.
15//!
16//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17//! generators and external random-number sources.
18//!
19//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20//! other random number generators.
21//!
22//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
23//! implementation of [`RngCore`].
24//!
25//! [`rand`]: https://docs.rs/rand
26
27#![doc(
28 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
29 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
30 html_root_url = "https://rust-random.github.io/rand/"
31)]
32#![deny(missing_docs)]
33#![deny(missing_debug_implementations)]
34#![doc(test(attr(allow(unused_variables), deny(warnings))))]
35#![cfg_attr(docsrs, feature(doc_auto_cfg))]
36#![no_std]
37
38#[cfg(feature = "std")]
39extern crate std;
40
41use core::{fmt, ops::DerefMut};
42
43pub mod block;
44pub mod impls;
45pub mod le;
46#[cfg(feature = "os_rng")]
47mod os;
48
49#[cfg(feature = "os_rng")]
50pub use os::{OsError, OsRng};
51
52/// Implementation-level interface for RNGs
53///
54/// This trait encapsulates the low-level functionality common to all
55/// generators, and is the "back end", to be implemented by generators.
56/// End users should normally use the [`rand::Rng`] trait
57/// which is automatically implemented for every type implementing `RngCore`.
58///
59/// Three different methods for generating random data are provided since the
60/// optimal implementation of each is dependent on the type of generator. There
61/// is no required relationship between the output of each; e.g. many
62/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
63/// values and drop any remaining unused bytes. The same can happen with the
64/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
65/// random bits for efficiency.
66///
67/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
68/// returning the same value, or never setting certain bits) can break rejection
69/// sampling used by random distributions, and also break other RNGs when
70/// seeding them via [`SeedableRng::from_rng`].
71///
72/// Algorithmic generators implementing [`SeedableRng`] should normally have
73/// *portable, reproducible* output, i.e. fix Endianness when converting values
74/// to avoid platform differences, and avoid making any changes which affect
75/// output (except by communicating that the release has breaking changes).
76///
77/// Typically an RNG will implement only one of the methods available
78/// in this trait directly, then use the helper functions from the
79/// [`impls`] module to implement the other methods.
80///
81/// Note that implementors of [`RngCore`] also automatically implement
82/// the [`TryRngCore`] trait with the `Error` associated type being
83/// equal to [`Infallible`].
84///
85/// It is recommended that implementations also implement:
86///
87/// - `Debug` with a custom implementation which *does not* print any internal
88/// state (at least, [`CryptoRng`]s should not risk leaking state through
89/// `Debug`).
90/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
91/// support optional at the crate level in PRNG libs.
92/// - `Clone`, if possible.
93/// - *never* implement `Copy` (accidental copies may cause repeated values).
94/// - *do not* implement `Default` for pseudorandom generators, but instead
95/// implement [`SeedableRng`], to guide users towards proper seeding.
96/// External / hardware RNGs can choose to implement `Default`.
97/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
98///
99/// # Example
100///
101/// A simple example, obviously not generating very *random* output:
102///
103/// ```
104/// #![allow(dead_code)]
105/// use rand_core::{RngCore, impls};
106///
107/// struct CountingRng(u64);
108///
109/// impl RngCore for CountingRng {
110/// fn next_u32(&mut self) -> u32 {
111/// self.next_u64() as u32
112/// }
113///
114/// fn next_u64(&mut self) -> u64 {
115/// self.0 += 1;
116/// self.0
117/// }
118///
119/// fn fill_bytes(&mut self, dst: &mut [u8]) {
120/// impls::fill_bytes_via_next(self, dst)
121/// }
122/// }
123/// ```
124///
125/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
126/// [`fill_bytes`]: RngCore::fill_bytes
127/// [`next_u32`]: RngCore::next_u32
128/// [`next_u64`]: RngCore::next_u64
129/// [`Infallible`]: core::convert::Infallible
130pub trait RngCore {
131 /// Return the next random `u32`.
132 ///
133 /// RNGs must implement at least one method from this trait directly. In
134 /// the case this method is not implemented directly, it can be implemented
135 /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
136 fn next_u32(&mut self) -> u32;
137
138 /// Return the next random `u64`.
139 ///
140 /// RNGs must implement at least one method from this trait directly. In
141 /// the case this method is not implemented directly, it can be implemented
142 /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
143 fn next_u64(&mut self) -> u64;
144
145 /// Fill `dest` with random data.
146 ///
147 /// RNGs must implement at least one method from this trait directly. In
148 /// the case this method is not implemented directly, it can be implemented
149 /// via [`impls::fill_bytes_via_next`].
150 ///
151 /// This method should guarantee that `dest` is entirely filled
152 /// with new data, and may panic if this is impossible
153 /// (e.g. reading past the end of a file that is being used as the
154 /// source of randomness).
155 fn fill_bytes(&mut self, dst: &mut [u8]);
156}
157
158impl<T: DerefMut> RngCore for T
159where
160 T::Target: RngCore,
161{
162 #[inline]
163 fn next_u32(&mut self) -> u32 {
164 self.deref_mut().next_u32()
165 }
166
167 #[inline]
168 fn next_u64(&mut self) -> u64 {
169 self.deref_mut().next_u64()
170 }
171
172 #[inline]
173 fn fill_bytes(&mut self, dst: &mut [u8]) {
174 self.deref_mut().fill_bytes(dst);
175 }
176}
177
178/// A marker trait used to indicate that an [`RngCore`] implementation is
179/// supposed to be cryptographically secure.
180///
181/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
182/// satisfy an additional properties over other generators: given the first
183/// *k* bits of an algorithm's output
184/// sequence, it should not be possible using polynomial-time algorithms to
185/// predict the next bit with probability significantly greater than 50%.
186///
187/// Some generators may satisfy an additional property, however this is not
188/// required by this trait: if the CSPRNG's state is revealed, it should not be
189/// computationally-feasible to reconstruct output prior to this. Some other
190/// generators allow backwards-computation and are considered *reversible*.
191///
192/// Note that this trait is provided for guidance only and cannot guarantee
193/// suitability for cryptographic applications. In general it should only be
194/// implemented for well-reviewed code implementing well-regarded algorithms.
195///
196/// Note also that use of a `CryptoRng` does not protect against other
197/// weaknesses such as seeding from a weak entropy source or leaking state.
198///
199/// Note that implementors of [`CryptoRng`] also automatically implement
200/// the [`TryCryptoRng`] trait.
201///
202/// [`BlockRngCore`]: block::BlockRngCore
203/// [`Infallible`]: core::convert::Infallible
204pub trait CryptoRng: RngCore {}
205
206impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}
207
208/// A potentially fallible variant of [`RngCore`]
209///
210/// This trait is a generalization of [`RngCore`] to support potentially-
211/// fallible IO-based generators such as [`OsRng`].
212///
213/// All implementations of [`RngCore`] automatically support this `TryRngCore`
214/// trait, using [`Infallible`][core::convert::Infallible] as the associated
215/// `Error` type.
216///
217/// An implementation of this trait may be made compatible with code requiring
218/// an [`RngCore`] through [`TryRngCore::unwrap_err`]. The resulting RNG will
219/// panic in case the underlying fallible RNG yields an error.
220pub trait TryRngCore {
221 /// The type returned in the event of a RNG error.
222 type Error: fmt::Debug + fmt::Display;
223
224 /// Return the next random `u32`.
225 fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
226 /// Return the next random `u64`.
227 fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
228 /// Fill `dest` entirely with random data.
229 fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;
230
231 /// Wrap RNG with the [`UnwrapErr`] wrapper.
232 fn unwrap_err(self) -> UnwrapErr<Self>
233 where
234 Self: Sized,
235 {
236 UnwrapErr(self)
237 }
238
239 /// Convert an [`RngCore`] to a [`RngReadAdapter`].
240 #[cfg(feature = "std")]
241 fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
242 where
243 Self: Sized,
244 {
245 RngReadAdapter { inner: self }
246 }
247}
248
249// Note that, unfortunately, this blanket impl prevents us from implementing
250// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
251// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
252impl<R: RngCore> TryRngCore for R {
253 type Error = core::convert::Infallible;
254
255 #[inline]
256 fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
257 Ok(self.next_u32())
258 }
259
260 #[inline]
261 fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
262 Ok(self.next_u64())
263 }
264
265 #[inline]
266 fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
267 self.fill_bytes(dst);
268 Ok(())
269 }
270}
271
272/// A marker trait used to indicate that a [`TryRngCore`] implementation is
273/// supposed to be cryptographically secure.
274///
275/// See [`CryptoRng`] docs for more information about cryptographically secure generators.
276pub trait TryCryptoRng: TryRngCore {}
277
278impl<R: CryptoRng> TryCryptoRng for R {}
279
280/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
281/// by panicking on potential errors.
282#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
283pub struct UnwrapErr<R: TryRngCore>(pub R);
284
285impl<R: TryRngCore> RngCore for UnwrapErr<R> {
286 #[inline]
287 fn next_u32(&mut self) -> u32 {
288 self.0.try_next_u32().unwrap()
289 }
290
291 #[inline]
292 fn next_u64(&mut self) -> u64 {
293 self.0.try_next_u64().unwrap()
294 }
295
296 #[inline]
297 fn fill_bytes(&mut self, dst: &mut [u8]) {
298 self.0.try_fill_bytes(dst).unwrap()
299 }
300}
301
302impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}
303
304/// A random number generator that can be explicitly seeded.
305///
306/// This trait encapsulates the low-level functionality common to all
307/// pseudo-random number generators (PRNGs, or algorithmic generators).
308///
309/// [`rand`]: https://docs.rs/rand
310pub trait SeedableRng: Sized {
311 /// Seed type, which is restricted to types mutably-dereferenceable as `u8`
312 /// arrays (we recommend `[u8; N]` for some `N`).
313 ///
314 /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
315 /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
316 /// partially overlapping periods.
317 ///
318 /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
319 ///
320 ///
321 /// # Implementing `SeedableRng` for RNGs with large seeds
322 ///
323 /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
324 /// `N` > 32. To be able to implement the traits required by `SeedableRng`
325 /// for RNGs with such large seeds, the newtype pattern can be used:
326 ///
327 /// ```
328 /// use rand_core::SeedableRng;
329 ///
330 /// const N: usize = 64;
331 /// #[derive(Clone)]
332 /// pub struct MyRngSeed(pub [u8; N]);
333 /// # #[allow(dead_code)]
334 /// pub struct MyRng(MyRngSeed);
335 ///
336 /// impl Default for MyRngSeed {
337 /// fn default() -> MyRngSeed {
338 /// MyRngSeed([0; N])
339 /// }
340 /// }
341 ///
342 /// impl AsRef<[u8]> for MyRngSeed {
343 /// fn as_ref(&self) -> &[u8] {
344 /// &self.0
345 /// }
346 /// }
347 ///
348 /// impl AsMut<[u8]> for MyRngSeed {
349 /// fn as_mut(&mut self) -> &mut [u8] {
350 /// &mut self.0
351 /// }
352 /// }
353 ///
354 /// impl SeedableRng for MyRng {
355 /// type Seed = MyRngSeed;
356 ///
357 /// fn from_seed(seed: MyRngSeed) -> MyRng {
358 /// MyRng(seed)
359 /// }
360 /// }
361 /// ```
362 type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;
363
364 /// Create a new PRNG using the given seed.
365 ///
366 /// PRNG implementations are allowed to assume that bits in the seed are
367 /// well distributed. That means usually that the number of one and zero
368 /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
369 /// Note that many non-cryptographic PRNGs will show poor quality output
370 /// if this is not adhered to. If you wish to seed from simple numbers, use
371 /// `seed_from_u64` instead.
372 ///
373 /// All PRNG implementations should be reproducible unless otherwise noted:
374 /// given a fixed `seed`, the same sequence of output should be produced
375 /// on all runs, library versions and architectures (e.g. check endianness).
376 /// Any "value-breaking" changes to the generator should require bumping at
377 /// least the minor version and documentation of the change.
378 ///
379 /// It is not required that this function yield the same state as a
380 /// reference implementation of the PRNG given equivalent seed; if necessary
381 /// another constructor replicating behaviour from a reference
382 /// implementation can be added.
383 ///
384 /// PRNG implementations should make sure `from_seed` never panics. In the
385 /// case that some special values (like an all zero seed) are not viable
386 /// seeds it is preferable to map these to alternative constant value(s),
387 /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
388 /// seed"). This is assuming only a small number of values must be rejected.
389 fn from_seed(seed: Self::Seed) -> Self;
390
391 /// Create a new PRNG using a `u64` seed.
392 ///
393 /// This is a convenience-wrapper around `from_seed` to allow construction
394 /// of any `SeedableRng` from a simple `u64` value. It is designed such that
395 /// low Hamming Weight numbers like 0 and 1 can be used and should still
396 /// result in good, independent seeds to the PRNG which is returned.
397 ///
398 /// This **is not suitable for cryptography**, as should be clear given that
399 /// the input size is only 64 bits.
400 ///
401 /// Implementations for PRNGs *may* provide their own implementations of
402 /// this function, but the default implementation should be good enough for
403 /// all purposes. *Changing* the implementation of this function should be
404 /// considered a value-breaking change.
405 fn seed_from_u64(mut state: u64) -> Self {
406 // We use PCG32 to generate a u32 sequence, and copy to the seed
407 fn pcg32(state: &mut u64) -> [u8; 4] {
408 const MUL: u64 = 6364136223846793005;
409 const INC: u64 = 11634580027462260723;
410
411 // We advance the state first (to get away from the input value,
412 // in case it has low Hamming Weight).
413 *state = state.wrapping_mul(MUL).wrapping_add(INC);
414 let state = *state;
415
416 // Use PCG output function with to_le to generate x:
417 let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
418 let rot = (state >> 59) as u32;
419 let x = xorshifted.rotate_right(rot);
420 x.to_le_bytes()
421 }
422
423 let mut seed = Self::Seed::default();
424 let mut iter = seed.as_mut().chunks_exact_mut(4);
425 for chunk in &mut iter {
426 chunk.copy_from_slice(&pcg32(&mut state));
427 }
428 let rem = iter.into_remainder();
429 if !rem.is_empty() {
430 rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
431 }
432
433 Self::from_seed(seed)
434 }
435
436 /// Create a new PRNG seeded from an infallible `Rng`.
437 ///
438 /// This may be useful when needing to rapidly seed many PRNGs from a master
439 /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
440 ///
441 /// The master PRNG should be at least as high quality as the child PRNGs.
442 /// When seeding non-cryptographic child PRNGs, we recommend using a
443 /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
444 /// correlations between the child PRNGs. If this is not possible (e.g.
445 /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
446 /// mixing function on the output or consider use of a hash function with
447 /// `from_seed`.
448 ///
449 /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
450 /// extreme example of what can go wrong: the new PRNG will be a clone
451 /// of the parent.
452 ///
453 /// PRNG implementations are allowed to assume that a good RNG is provided
454 /// for seeding, and that it is cryptographically secure when appropriate.
455 /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
456 /// method should ensure the implementation satisfies reproducibility
457 /// (in prior versions this was not required).
458 ///
459 /// [`rand`]: https://docs.rs/rand
460 fn from_rng(rng: &mut impl RngCore) -> Self {
461 let mut seed = Self::Seed::default();
462 rng.fill_bytes(seed.as_mut());
463 Self::from_seed(seed)
464 }
465
466 /// Create a new PRNG seeded from a potentially fallible `Rng`.
467 ///
468 /// See [`from_rng`][SeedableRng::from_rng] docs for more information.
469 fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> {
470 let mut seed = Self::Seed::default();
471 rng.try_fill_bytes(seed.as_mut())?;
472 Ok(Self::from_seed(seed))
473 }
474
475 /// Creates a new instance of the RNG seeded via [`getrandom`].
476 ///
477 /// This method is the recommended way to construct non-deterministic PRNGs
478 /// since it is convenient and secure.
479 ///
480 /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
481 /// If it's not desirable, use the [`try_from_os_rng`] method instead.
482 ///
483 /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
484 /// issue, one may prefer to seed from a local PRNG, e.g.
485 /// `from_rng(rand::rng()).unwrap()`.
486 ///
487 /// # Panics
488 ///
489 /// If [`getrandom`] is unable to provide secure entropy this method will panic.
490 ///
491 /// [`getrandom`]: https://docs.rs/getrandom
492 /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
493 #[cfg(feature = "os_rng")]
494 fn from_os_rng() -> Self {
495 match Self::try_from_os_rng() {
496 Ok(res) => res,
497 Err(err) => panic!("from_os_rng failed: {}", err),
498 }
499 }
500
501 /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
502 /// potential [`getrandom`] errors.
503 ///
504 /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
505 /// issue, one may prefer to seed from a local PRNG, e.g.
506 /// `from_rng(&mut rand::rng()).unwrap()`.
507 ///
508 /// [`getrandom`]: https://docs.rs/getrandom
509 #[cfg(feature = "os_rng")]
510 fn try_from_os_rng() -> Result<Self, getrandom::Error> {
511 let mut seed = Self::Seed::default();
512 getrandom::fill(seed.as_mut())?;
513 let res = Self::from_seed(seed);
514 Ok(res)
515 }
516}
517
518/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
519///
520/// # Examples
521///
522/// ```no_run
523/// # use std::{io, io::Read};
524/// # use std::fs::File;
525/// # use rand_core::{OsRng, TryRngCore};
526///
527/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
528/// ```
529#[cfg(feature = "std")]
530pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
531 inner: &'a mut R,
532}
533
534#[cfg(feature = "std")]
535impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
536 #[inline]
537 fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
538 self.inner.try_fill_bytes(buf).map_err(|err| {
539 std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}"))
540 })?;
541 Ok(buf.len())
542 }
543}
544
545#[cfg(feature = "std")]
546impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
547 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
548 f.debug_struct("ReadAdapter").finish()
549 }
550}
551
552#[cfg(test)]
553mod test {
554 use super::*;
555
556 #[test]
557 fn test_seed_from_u64() {
558 struct SeedableNum(u64);
559 impl SeedableRng for SeedableNum {
560 type Seed = [u8; 8];
561
562 fn from_seed(seed: Self::Seed) -> Self {
563 let mut x = [0u64; 1];
564 le::read_u64_into(&seed, &mut x);
565 SeedableNum(x[0])
566 }
567 }
568
569 const N: usize = 8;
570 const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
571 let mut results = [0u64; N];
572 for (i, seed) in SEEDS.iter().enumerate() {
573 let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
574 results[i] = x;
575 }
576
577 for (i1, r1) in results.iter().enumerate() {
578 let weight = r1.count_ones();
579 // This is the binomial distribution B(64, 0.5), so chance of
580 // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
581 // weight > 44.
582 assert!((20..=44).contains(&weight));
583
584 for (i2, r2) in results.iter().enumerate() {
585 if i1 == i2 {
586 continue;
587 }
588 let diff_weight = (r1 ^ r2).count_ones();
589 assert!(diff_weight >= 20);
590 }
591 }
592
593 // value-breakage test:
594 assert_eq!(results[0], 5029875928683246316);
595 }
596}