scheduler/sync/count_down_latch.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
use std::sync::{Arc, Condvar, Mutex};
/// A latch counter.
///
/// If a counter is cloned, it will inherit the counter's state for the current generation. For
/// example if a counter is cloned after it has already counted down, then the new counter will also
/// be treated as if it had already counted down in the current generation. If a counter is cloned
/// before it has counted down, then the new counter will also need to count down in the current
/// generation.
#[derive(Debug)]
pub struct LatchCounter {
inner: Arc<LatchInner>,
/// An ID for this counter's count-down round.
generation: usize,
}
/// A latch waiter.
///
/// If a waiter is cloned, it will inherit the waiter's state for the current generation. For
/// example if a waiter is cloned after it has already waited, then the new waiter will also be
/// treated as if it had already waited in the current generation. If a waiter is cloned before it
/// has waited, then the new waiter will also need to wait in the current generation.
#[derive(Debug)]
pub struct LatchWaiter {
inner: Arc<LatchInner>,
/// An ID for this waiter's count-down round.
generation: usize,
}
#[derive(Debug)]
struct LatchInner {
lock: Mutex<LatchState>,
cond: Condvar,
}
#[derive(Debug)]
struct LatchState {
/// The current latch "round".
generation: usize,
/// Number of counters remaining.
counters: usize,
/// Number of waiters remaining.
waiters: usize,
/// Total number of counters.
total_counters: usize,
/// Total number of waiters.
total_waiters: usize,
}
/// Build a latch counter and waiter. The counter and waiter can be cloned to create new counters
/// and waiters.
pub fn build_count_down_latch() -> (LatchCounter, LatchWaiter) {
let inner = Arc::new(LatchInner {
lock: Mutex::new(LatchState {
generation: 0,
counters: 1,
waiters: 1,
total_counters: 1,
total_waiters: 1,
}),
cond: Condvar::new(),
});
let counter = LatchCounter {
inner: Arc::clone(&inner),
generation: 0,
};
let waiter = LatchWaiter {
inner,
generation: 0,
};
(counter, waiter)
}
impl LatchState {
pub fn advance_generation(&mut self) {
debug_assert_eq!(self.counters, 0);
debug_assert_eq!(self.waiters, 0);
self.counters = self.total_counters;
self.waiters = self.total_waiters;
self.generation = self.generation.wrapping_add(1);
}
}
impl LatchCounter {
/// Decrement the latch count and wake the waiters if the count reaches 0. This must not be
/// called more than once per generation (must not be called again until all of the waiters have
/// returned from their [`LatchWaiter::wait()`] calls), otherwise it will panic.
pub fn count_down(&mut self) {
let counters;
{
let mut lock = self.inner.lock.lock().unwrap();
if self.generation != lock.generation {
let latch_gen = lock.generation;
std::mem::drop(lock);
panic!(
"Counter generation does not match latch generation ({} != {})",
self.generation, latch_gen
);
}
lock.counters = lock.counters.checked_sub(1).unwrap();
counters = lock.counters;
}
// if this is the last counter, notify the waiters
if counters == 0 {
self.inner.cond.notify_all();
}
self.generation = self.generation.wrapping_add(1);
}
}
impl LatchWaiter {
/// Wait for the latch count to reach 0. If the latch count has already reached 0 for the
/// current genration, this will return immediately.
pub fn wait(&mut self) {
{
let lock = self.inner.lock.lock().unwrap();
let mut lock = self
.inner
.cond
// wait until we're in the active generation and all counters have counted down
.wait_while(lock, |x| self.generation != x.generation || x.counters > 0)
.unwrap();
lock.waiters = lock.waiters.checked_sub(1).unwrap();
// if this is the last waiter (and we already know that there are no more counters), start
// the next generation
if lock.waiters == 0 {
lock.advance_generation();
}
}
self.generation = self.generation.wrapping_add(1);
}
}
impl Clone for LatchCounter {
fn clone(&self) -> Self {
let mut lock = self.inner.lock.lock().unwrap();
lock.total_counters = lock.total_counters.checked_add(1).unwrap();
// if we haven't already counted down during the current generation
if self.generation == lock.generation {
lock.counters = lock.counters.checked_add(1).unwrap();
}
LatchCounter {
inner: Arc::clone(&self.inner),
generation: self.generation,
}
}
}
impl Clone for LatchWaiter {
fn clone(&self) -> Self {
let mut lock = self.inner.lock.lock().unwrap();
lock.total_waiters = lock.total_waiters.checked_add(1).unwrap();
// if we haven't already waited during the current generation
if self.generation == lock.generation {
lock.waiters = lock.waiters.checked_add(1).unwrap();
}
LatchWaiter {
inner: Arc::clone(&self.inner),
generation: self.generation,
}
}
}
impl std::ops::Drop for LatchCounter {
fn drop(&mut self) {
let mut lock = self.inner.lock.lock().unwrap();
lock.total_counters = lock.total_counters.checked_sub(1).unwrap();
// if we haven't already counted down during the current generation
if self.generation == lock.generation {
lock.counters = lock.counters.checked_sub(1).unwrap();
}
// if this is the last counter, notify the waiters
if lock.counters == 0 {
self.inner.cond.notify_all();
}
}
}
impl std::ops::Drop for LatchWaiter {
fn drop(&mut self) {
let mut lock = self.inner.lock.lock().unwrap();
lock.total_waiters = lock.total_waiters.checked_sub(1).unwrap();
// if we haven't already waited during the current generation
if self.generation == lock.generation {
lock.waiters = lock.waiters.checked_sub(1).unwrap();
}
// if this is the last waiter and there are no more counters, start the next generation
if lock.waiters == 0 && lock.counters == 0 {
lock.advance_generation();
}
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use atomic_refcell::AtomicRefCell;
use rand::{Rng, SeedableRng};
use super::*;
#[test]
fn test_clone() {
let (mut counter, mut waiter) = build_count_down_latch();
let (mut counter_clone, mut waiter_clone) = (counter.clone(), waiter.clone());
counter.count_down();
counter_clone.count_down();
waiter.wait();
waiter_clone.wait();
}
#[test]
fn test_clone_before_countdown() {
let (mut counter, mut waiter) = build_count_down_latch();
// the cloned counter will also need to count down for the current generation
let mut counter_clone = counter.clone();
counter.count_down();
counter_clone.count_down();
waiter.wait();
counter.count_down();
counter_clone.count_down();
waiter.wait();
let (mut counter, mut waiter) = build_count_down_latch();
// the cloned waiter will also need to wait for the current generation
let mut waiter_clone = waiter.clone();
counter.count_down();
waiter.wait();
waiter_clone.wait();
counter.count_down();
waiter.wait();
waiter_clone.wait();
}
#[test]
fn test_clone_after_countdown() {
let (mut counter, mut waiter) = build_count_down_latch();
counter.count_down();
// the cloned counter will also be considered "counted down" for the current generation
let mut counter_clone = counter.clone();
// if the cloned counter did count down here, it would panic
waiter.wait();
counter.count_down();
counter_clone.count_down();
waiter.wait();
let (mut counter, mut waiter) = build_count_down_latch();
let mut waiter_clone = waiter.clone();
counter.count_down();
waiter.wait();
// the cloned waiter will also be considered "waited" for the current generation
let mut waiter_clone_2 = waiter.clone();
// if the cloned waiter did wait here, it would be waiting for the next generation
waiter_clone.wait();
counter.count_down();
waiter.wait();
waiter_clone.wait();
waiter_clone_2.wait();
}
#[test]
#[should_panic]
fn test_double_count() {
let (mut counter, mut _waiter) = build_count_down_latch();
counter.count_down();
counter.count_down();
}
#[test]
fn test_single_thread() {
let (mut counter, mut waiter) = build_count_down_latch();
counter.count_down();
waiter.wait();
counter.count_down();
waiter.wait();
counter.count_down();
waiter.wait();
let mut waiter_clone = waiter.clone();
counter.count_down();
waiter.wait();
waiter_clone.wait();
counter.count_down();
waiter.wait();
waiter_clone.wait();
}
#[test]
fn test_multi_thread() {
let (mut exclusive_counter, mut exclusive_waiter) = build_count_down_latch();
let (mut shared_counter, mut shared_waiter) = build_count_down_latch();
let repeat = 30;
let lock = Arc::new(AtomicRefCell::new(()));
let lock_clone = Arc::clone(&lock);
// The goal of this test is to make sure that the new threads alternate with the main thread
// to access the atomic refcell. The new threads each hold on to a shared borrow of the
// atomic refcell for ~5 ms, then the main thread gets an exclusive borrow for ~5 ms,
// repeating. If these time slices ever overlap, then either a shared or exclusive borrow
// will cause a panic and the test will fail. Randomness is added to the sleeps to vary the
// order in which threads wait and count down, to try to cover more edge cases.
let thread_fn = move |seed| {
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
for _ in 0..repeat {
// wait for the main thread to be done with its exclusive borrow
std::thread::sleep(Duration::from_millis(5));
exclusive_waiter.wait();
{
// a shared borrow for a duration in the range of 0-10 ms
let _x = lock_clone.borrow();
std::thread::sleep(Duration::from_millis(rng.gen_range(0..10)));
}
shared_counter.count_down();
}
};
// start 5 threads
let handles: Vec<_> = (0..5)
.map(|seed| {
let mut f = thread_fn.clone();
std::thread::spawn(move || f(seed))
})
.collect();
std::mem::drop(thread_fn);
let mut rng = rand::rngs::StdRng::seed_from_u64(100);
for _ in 0..repeat {
{
// an exclusive borrow for a duration in the range of 0-10 ms
let _x = lock.borrow_mut();
std::thread::sleep(Duration::from_millis(rng.gen_range(0..10)));
}
exclusive_counter.count_down();
// wait for the other threads to be done with their shared borrow
std::thread::sleep(Duration::from_millis(5));
shared_waiter.wait();
}
for h in handles {
h.join().unwrap();
}
}
}