neli/utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
//! A module containing utilities for working with constructs like
//! bitflags and other low level operations.
//!
//! # Design decisions
//! Some of the less documented aspects of interacting with netlink
//! are handled internally in the types so that the user does not
//! have to be aware of them.
use std::mem::size_of;
type BitArrayType = u32;
/// A bit array meant to be compatible with the bit array
/// returned by the `NETLINK_LIST_MEMBERSHIPS` socket operation
/// on netlink sockets.
pub struct NetlinkBitArray(Vec<BitArrayType>);
/// bittest/bitset instrinsics are not stable in Rust so this
/// needs to be implemented this way.
#[allow(clippy::len_without_is_empty)]
impl NetlinkBitArray {
const BIT_SIZE: usize = BitArrayType::BITS as usize;
/// Create a new bit array.
///
/// This method will round `bit_len` up to the nearest
/// multiple of [`size_of::<u32>()`][std::mem::size_of].
pub fn new(bit_len: usize) -> Self {
let round = Self::BIT_SIZE - 1;
NetlinkBitArray(vec![0; ((bit_len + round) & !round) / Self::BIT_SIZE])
}
/// Resize the underlying vector to have enough space for
/// the nearest multiple of [`size_of::<u32>()`][std::mem::size_of]
/// rounded up.
pub fn resize_bits(&mut self, bit_len: usize) {
let round = Self::BIT_SIZE - 1;
self.0
.resize(((bit_len + round) & !round) / Self::BIT_SIZE, 0);
}
/// Resize the underlying vector to have enough space for
/// the nearest multiple of [`size_of::<BitArrayType>()`][std::mem::size_of].
pub fn resize(&mut self, bytes: usize) {
let byte_round = size_of::<BitArrayType>() - 1;
self.0.resize(
((bytes + byte_round) & !byte_round) / size_of::<BitArrayType>(),
0,
);
}
/// Returns true if the `n`th bit is set.
pub fn is_set(&self, n: usize) -> bool {
if n == 0 {
return false;
}
let n_1 = n - 1;
let bit_segment = self.0[n_1 / Self::BIT_SIZE];
let bit_shifted_n = 1 << (n_1 % Self::BIT_SIZE);
bit_segment & bit_shifted_n == bit_shifted_n
}
/// Set the `n`th bit.
pub fn set(&mut self, n: usize) {
if n == 0 {
return;
}
let n_1 = n - 1;
let bit_segment = self.0[n_1 / Self::BIT_SIZE];
let bit_shifted_n = 1 << (n_1 % Self::BIT_SIZE);
self.0[n_1 / Self::BIT_SIZE] = bit_segment | bit_shifted_n;
}
/// Get a vector representation of all of the bit positions set
/// to 1 in this bit array.
///
/// ## Example
/// ```
/// use neli::utils::NetlinkBitArray;
///
/// let mut array = NetlinkBitArray::new(24);
/// array.set(4);
/// array.set(7);
/// array.set(23);
/// assert_eq!(array.to_vec(), vec![4, 7, 23]);
/// ```
pub fn to_vec(&self) -> Vec<u32> {
let mut bits = Vec::new();
for bit in 0..self.len_bits() {
let bit_shifted = 1 << (bit % Self::BIT_SIZE);
if bit_shifted & self.0[bit / Self::BIT_SIZE] == bit_shifted {
bits.push(bit as u32 + 1);
}
}
bits
}
/// Return the number of bits that can be contained in this bit
/// array.
pub fn len_bits(&self) -> usize {
self.0.len() * Self::BIT_SIZE
}
/// Return the length in bytes for this bit array.
pub fn len(&self) -> usize {
self.0.len() * size_of::<BitArrayType>()
}
pub(crate) fn as_mut_slice(&mut self) -> &mut [BitArrayType] {
self.0.as_mut_slice()
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::test::setup;
#[test]
fn test_bit_array() {
setup();
let mut bit_array = NetlinkBitArray::new(7);
assert_eq!(bit_array.0.len(), 1);
bit_array.set(4);
assert_eq!(bit_array.0[0], 0b1000);
assert!(bit_array.is_set(4));
assert!(!bit_array.is_set(0));
assert!(!bit_array.is_set(1));
assert!(!bit_array.is_set(2));
assert!(!bit_array.is_set(3));
assert_eq!(bit_array.len(), 4);
assert_eq!(bit_array.len_bits(), 32);
let mut bit_array = NetlinkBitArray::new(33);
bit_array.set(32);
bit_array.set(33);
assert!(bit_array.0[0] == 1 << 31);
assert!(bit_array.0[1] == 1);
assert!(bit_array.is_set(32));
assert!(bit_array.is_set(33));
let mut bit_array = NetlinkBitArray::new(32);
assert_eq!(bit_array.len(), 4);
bit_array.resize_bits(33);
assert_eq!(bit_array.len(), 8);
bit_array.resize_bits(1);
assert_eq!(bit_array.len(), 4);
let mut bit_array = NetlinkBitArray::new(33);
assert_eq!(bit_array.len(), 8);
bit_array.resize(1);
assert_eq!(bit_array.len(), 4);
bit_array.resize(9);
assert_eq!(bit_array.len(), 12);
let bit_array = NetlinkBitArray(vec![8, 8, 8]);
assert_eq!(bit_array.to_vec(), vec![4, 36, 68]);
}
}