shadow_rs/core/
manager.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
use std::cell::RefCell;
use std::collections::HashMap;
use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;
use std::path::PathBuf;
use std::sync::atomic::AtomicU32;
use std::sync::Arc;
use std::time::Duration;

use anyhow::Context;
use atomic_refcell::AtomicRefCell;
use log::warn;
use rand::seq::SliceRandom;
use rand_xoshiro::Xoshiro256PlusPlus;
use scheduler::thread_per_core::ThreadPerCoreSched;
use scheduler::thread_per_host::ThreadPerHostSched;
use scheduler::{HostIter, Scheduler};
use shadow_shim_helper_rs::emulated_time::EmulatedTime;
use shadow_shim_helper_rs::shim_shmem::ManagerShmem;
use shadow_shim_helper_rs::simulation_time::SimulationTime;
use shadow_shim_helper_rs::util::SyncSendPointer;
use shadow_shim_helper_rs::HostId;
use shadow_shmem::allocator::ShMemBlock;

use crate::core::configuration::{self, ConfigOptions, Flatten};
use crate::core::controller::{Controller, ShadowStatusBarState, SimController};
use crate::core::cpu;
use crate::core::resource_usage;
use crate::core::runahead::Runahead;
use crate::core::sim_config::{Bandwidth, HostInfo};
use crate::core::sim_stats;
use crate::core::worker;
use crate::cshadow as c;
use crate::host::host::{Host, HostParameters};
use crate::network::graph::{IpAssignment, RoutingInfo};
use crate::utility;
use crate::utility::childpid_watcher::ChildPidWatcher;
use crate::utility::status_bar::Status;

pub struct Manager<'a> {
    manager_config: Option<ManagerConfig>,
    controller: &'a Controller<'a>,
    config: &'a ConfigOptions,

    raw_frequency: u64,
    native_tsc_frequency: u64,
    end_time: EmulatedTime,

    data_path: PathBuf,
    hosts_path: PathBuf,

    preload_paths: Arc<Vec<PathBuf>>,

    check_fd_usage: bool,
    check_mem_usage: bool,

    meminfo_file: std::fs::File,
    shmem: ShMemBlock<'static, ManagerShmem>,
}

impl<'a> Manager<'a> {
    pub fn new(
        manager_config: ManagerConfig,
        controller: &'a Controller<'a>,
        config: &'a ConfigOptions,
        end_time: EmulatedTime,
    ) -> anyhow::Result<Self> {
        // get the system's CPU frequency
        let raw_frequency = get_raw_cpu_frequency_hz().unwrap_or_else(|e| {
            let default_freq = 2_500_000_000; // 2.5 GHz
            log::debug!(
                "Failed to get raw CPU frequency, using {} Hz instead: {}",
                default_freq,
                e
            );
            default_freq
        });

        let native_tsc_frequency = if let Some(f) = shadow_tsc::Tsc::native_cycles_per_second() {
            f
        } else {
            warn!(
                "Couldn't find native TSC frequency. Emulated rdtsc may use a rate different than managed code expects"
            );
            raw_frequency
        };

        let mut preload_paths = Vec::new();

        // we always preload the injector lib to ensure that the shim is loaded into the managed
        // processes
        const PRELOAD_INJECTOR_LIB: &str = "libshadow_injector.so";
        preload_paths.push(
            get_required_preload_path(PRELOAD_INJECTOR_LIB).with_context(|| {
                format!("Failed to get path to preload library '{PRELOAD_INJECTOR_LIB}'")
            })?,
        );

        // preload libc lib if option is enabled
        const PRELOAD_LIBC_LIB: &str = "libshadow_libc.so";
        if config.experimental.use_preload_libc.unwrap() {
            let path = get_required_preload_path(PRELOAD_LIBC_LIB).with_context(|| {
                format!("Failed to get path to preload library '{PRELOAD_LIBC_LIB}'")
            })?;
            preload_paths.push(path);
        } else {
            log::info!("Preloading the libc library is disabled");
        };

        // preload openssl rng lib if option is enabled
        const PRELOAD_OPENSSL_RNG_LIB: &str = "libshadow_openssl_rng.so";
        if config.experimental.use_preload_openssl_rng.unwrap() {
            let path = get_required_preload_path(PRELOAD_OPENSSL_RNG_LIB).with_context(|| {
                format!("Failed to get path to preload library '{PRELOAD_OPENSSL_RNG_LIB}'")
            })?;
            preload_paths.push(path);
        } else {
            log::info!("Preloading the openssl rng library is disabled");
        };

        // preload openssl crypto lib if option is enabled
        const PRELOAD_OPENSSL_CRYPTO_LIB: &str = "libshadow_openssl_crypto.so";
        if config.experimental.use_preload_openssl_crypto.unwrap() {
            let path =
                get_required_preload_path(PRELOAD_OPENSSL_CRYPTO_LIB).with_context(|| {
                    format!("Failed to get path to preload library '{PRELOAD_OPENSSL_CRYPTO_LIB}'")
                })?;
            preload_paths.push(path);
        } else {
            log::info!("Preloading the openssl crypto library is disabled");
        };

        // use the working dir to generate absolute paths
        let cwd = std::env::current_dir()?;
        let template_path = config
            .general
            .template_directory
            .flatten_ref()
            .map(|x| cwd.clone().join(x));
        let data_path = cwd.join(config.general.data_directory.as_ref().unwrap());
        let hosts_path = data_path.join("hosts");

        if let Some(template_path) = template_path {
            log::debug!(
                "Copying template directory '{}' to '{}'",
                template_path.display(),
                data_path.display()
            );

            // copy the template directory to the data directory path
            utility::copy_dir_all(&template_path, &data_path).with_context(|| {
                format!(
                    "Failed to copy template directory '{}' to '{}'",
                    template_path.display(),
                    data_path.display()
                )
            })?;

            // create the hosts directory if it doesn't exist
            let result = std::fs::create_dir(&hosts_path);
            if let Err(e) = result {
                if e.kind() != std::io::ErrorKind::AlreadyExists {
                    return Err(e).context(format!(
                        "Failed to create hosts directory '{}'",
                        hosts_path.display()
                    ));
                }
            }
        } else {
            // create the data and hosts directories
            std::fs::create_dir(&data_path).with_context(|| {
                format!("Failed to create data directory '{}'", data_path.display())
            })?;
            std::fs::create_dir(&hosts_path).with_context(|| {
                format!(
                    "Failed to create hosts directory '{}'",
                    hosts_path.display(),
                )
            })?;
        }

        // save the processed config as yaml
        let config_out_filename = data_path.join("processed-config.yaml");
        let config_out_file = std::fs::File::create(&config_out_filename).with_context(|| {
            format!("Failed to create file '{}'", config_out_filename.display())
        })?;

        serde_yaml::to_writer(config_out_file, &config).with_context(|| {
            format!(
                "Failed to write processed config yaml to file '{}'",
                config_out_filename.display()
            )
        })?;

        let meminfo_file =
            std::fs::File::open("/proc/meminfo").context("Failed to open '/proc/meminfo'")?;

        let shmem = shadow_shmem::allocator::shmalloc(ManagerShmem {
            log_start_time_micros: unsafe { c::logger_get_global_start_time_micros() },
        });

        Ok(Self {
            manager_config: Some(manager_config),
            controller,
            config,
            raw_frequency,
            native_tsc_frequency,
            end_time,
            data_path,
            hosts_path,
            preload_paths: Arc::new(preload_paths),
            check_fd_usage: true,
            check_mem_usage: true,
            meminfo_file,
            shmem,
        })
    }

    pub fn run(
        mut self,
        status_logger_state: Option<&Arc<Status<ShadowStatusBarState>>>,
    ) -> anyhow::Result<u32> {
        let mut manager_config = self.manager_config.take().unwrap();

        let min_runahead_config: Option<Duration> = self
            .config
            .experimental
            .runahead
            .flatten()
            .map(|x| x.into());
        let min_runahead_config: Option<SimulationTime> =
            min_runahead_config.map(|x| x.try_into().unwrap());

        let bootstrap_end_time: Duration = self.config.general.bootstrap_end_time.unwrap().into();
        let bootstrap_end_time: SimulationTime = bootstrap_end_time.try_into().unwrap();
        let bootstrap_end_time = EmulatedTime::SIMULATION_START + bootstrap_end_time;

        let smallest_latency = SimulationTime::from_nanos(
            manager_config
                .routing_info
                .get_smallest_latency_ns()
                .unwrap(),
        );

        let parallelism: usize = match self.config.general.parallelism.unwrap() {
            0 => {
                let cores = cpu::count_physical_cores().try_into().unwrap();
                log::info!("The parallelism option was 0, so using parallelism={cores}");
                cores
            }
            x => x.try_into().unwrap(),
        };

        // Set up the global DNS before building the hosts
        let dns = unsafe { c::dns_new() };
        assert!(!dns.is_null());

        // Assign the host id only once to guarantee it stays associated with its host.
        let host_init: Vec<(&HostInfo, HostId)> = manager_config
            .hosts
            .iter()
            .enumerate()
            .map(|(i, info)| (info, HostId::from(u32::try_from(i).unwrap())))
            .collect();

        for (info, id) in &host_init {
            // Set up the host identity.
            let std::net::IpAddr::V4(addr) = info.ip_addr.unwrap() else {
                unreachable!("IPv6 not supported");
            };
            let name = info.name.clone();

            // Register in the global DNS.
            {
                let chostname = CString::new(&*name).unwrap();
                let caddr = u32::from(addr).to_be();
                unsafe { c::dns_register(dns, *id, chostname.as_ptr(), caddr) };
            }
        }

        // Now build the hosts using the assigned host ids.
        // note: there are several return points before we add these hosts to the scheduler and we
        // would leak memory if we return before then, but not worrying about that since the issues
        // will go away when we move the hosts to rust, and if we don't add them to the scheduler
        // then it means there was an error and we're going to exit anyways
        let mut hosts: Vec<_> = host_init
            .iter()
            .map(|(info, id)| {
                self.build_host(*id, info)
                    .with_context(|| format!("Failed to build host '{}'", info.name))
            })
            .collect::<anyhow::Result<_>>()?;

        // shuffle the list of hosts to make sure that they are randomly assigned by the scheduler
        hosts.shuffle(&mut manager_config.random);

        let use_cpu_pinning = self.config.experimental.use_cpu_pinning.unwrap();

        // an infinite iterator that always returns `<Option<Option<u32>>>::Some`
        let cpu_iter =
            std::iter::from_fn(|| {
                // if cpu pinning is enabled, return Some(Some(cpu_id)), otherwise return Some(None)
                Some(use_cpu_pinning.then(|| {
                    u32::try_from(unsafe { c::affinity_getGoodWorkerAffinity() }).unwrap()
                }))
            });

        // shadow is parallelized at the host level, so we don't need more parallelism than the
        // number of hosts
        let parallelism = std::cmp::min(parallelism, hosts.len());

        // should have either all `Some` values, or all `None` values
        let cpus: Vec<Option<u32>> = cpu_iter.take(parallelism).collect();
        if cpus[0].is_some() {
            log::debug!("Pinning to cpus: {:?}", cpus);
            assert!(cpus.iter().all(|x| x.is_some()));
        } else {
            log::debug!("Not pinning to CPUs");
            assert!(cpus.iter().all(|x| x.is_none()));
        }
        assert_eq!(cpus.len(), parallelism);

        // set the simulation's global state
        worker::WORKER_SHARED
            .borrow_mut()
            .replace(worker::WorkerShared {
                ip_assignment: manager_config.ip_assignment,
                routing_info: manager_config.routing_info,
                host_bandwidths: manager_config.host_bandwidths,
                // safe since the DNS type has an internal mutex
                dns: unsafe { SyncSendPointer::new(dns) },
                num_plugin_errors: AtomicU32::new(0),
                // allow the status logger's state to be updated from anywhere
                status_logger_state: status_logger_state.map(Arc::clone),
                runahead: Runahead::new(
                    self.config.experimental.use_dynamic_runahead.unwrap(),
                    smallest_latency,
                    min_runahead_config,
                ),
                child_pid_watcher: ChildPidWatcher::new(),
                event_queues: hosts
                    .iter()
                    .map(|x| (x.id(), x.event_queue().clone()))
                    .collect(),
                bootstrap_end_time,
                sim_end_time: self.end_time,
            });

        // scope used so that the scheduler is dropped before we log the global counters below
        {
            let mut scheduler = match self.config.experimental.scheduler.unwrap() {
                configuration::Scheduler::ThreadPerHost => {
                    std::thread_local! {
                        /// A thread-local required by the thread-per-host scheduler.
                        static SCHED_HOST_STORAGE: RefCell<Option<Box<Host>>> = const { RefCell::new(None) };
                    }
                    Scheduler::ThreadPerHost(ThreadPerHostSched::new(
                        &cpus,
                        &SCHED_HOST_STORAGE,
                        hosts,
                    ))
                }
                configuration::Scheduler::ThreadPerCore => {
                    Scheduler::ThreadPerCore(ThreadPerCoreSched::new(
                        &cpus,
                        hosts,
                        self.config.experimental.use_worker_spinning.unwrap(),
                    ))
                }
            };

            // initialize the thread-local Worker
            scheduler.scope(|s| {
                s.run(|thread_id| {
                    worker::Worker::new_for_this_thread(worker::WorkerThreadID(thread_id as u32))
                });
            });

            // the current simulation interval
            let mut window = Some((
                EmulatedTime::SIMULATION_START,
                EmulatedTime::SIMULATION_START + SimulationTime::NANOSECOND,
            ));

            // the next event times for each thread; allocated here to avoid re-allocating each
            // scheduling loop
            let thread_next_event_times: Vec<AtomicRefCell<Option<EmulatedTime>>> =
                vec![AtomicRefCell::new(None); scheduler.parallelism()];

            // how often to log heartbeat messages
            let heartbeat_interval = self
                .config
                .general
                .heartbeat_interval
                .flatten()
                .map(|x| Duration::from(x).try_into().unwrap());

            let mut last_heartbeat = EmulatedTime::SIMULATION_START;
            let mut time_of_last_usage_check = std::time::Instant::now();

            // the scheduling loop
            while let Some((window_start, window_end)) = window {
                // update the status logger
                let display_time = std::cmp::min(window_start, window_end);
                worker::WORKER_SHARED
                    .borrow()
                    .as_ref()
                    .unwrap()
                    .update_status_logger(|state| {
                        state.current = display_time;
                    });

                // run the events
                scheduler.scope(|s| {
                    // run the closure on each of the scheduler's threads
                    s.run_with_data(
                        &thread_next_event_times,
                        // each call of the closure is given an abstract thread-specific host
                        // iterator, and an element of 'thread_next_event_times'
                        move |_, hosts, next_event_time| {
                            let mut next_event_time = next_event_time.borrow_mut();

                            worker::Worker::reset_next_event_time();
                            worker::Worker::set_round_end_time(window_end);

                            for_each_host(hosts, |host| {
                                let host_next_event_time = {
                                    host.lock_shmem();
                                    host.execute(window_end);
                                    let host_next_event_time = host.next_event_time();
                                    host.unlock_shmem();
                                    host_next_event_time
                                };
                                *next_event_time = [*next_event_time, host_next_event_time]
                                    .into_iter()
                                    .flatten() // filter out None
                                    .reduce(std::cmp::min);
                            });

                            let packet_next_event_time = worker::Worker::get_next_event_time();

                            *next_event_time = [*next_event_time, packet_next_event_time]
                                .into_iter()
                                .flatten() // filter out None
                                .reduce(std::cmp::min);
                        },
                    );

                    // log a heartbeat message every 'heartbeat_interval' amount of simulated time
                    if let Some(heartbeat_interval) = heartbeat_interval {
                        if window_start > last_heartbeat + heartbeat_interval {
                            last_heartbeat = window_start;
                            self.log_heartbeat(window_start);
                        }
                    }

                    // check resource usage every 30 real seconds
                    let current_time = std::time::Instant::now();
                    if current_time.duration_since(time_of_last_usage_check)
                        > Duration::from_secs(30)
                    {
                        time_of_last_usage_check = current_time;
                        self.check_resource_usage();
                    }
                });

                // get the minimum next event time for all threads (also resets the next event times
                // to None while we have them borrowed)
                let min_next_event_time = thread_next_event_times
                    .iter()
                    // the take() resets it to None for the next scheduling loop
                    .filter_map(|x| x.borrow_mut().take())
                    .reduce(std::cmp::min)
                    .unwrap_or(EmulatedTime::MAX);

                log::debug!(
                    "Finished execution window [{}--{}], next event at {}",
                    (window_start - EmulatedTime::SIMULATION_START).as_nanos(),
                    (window_end - EmulatedTime::SIMULATION_START).as_nanos(),
                    (min_next_event_time - EmulatedTime::SIMULATION_START).as_nanos(),
                );

                // notify controller that we finished this round, and the time of our next event in
                // order to fast-forward our execute window if possible
                window = self
                    .controller
                    .manager_finished_current_round(min_next_event_time);
            }

            scheduler.scope(|s| {
                s.run_with_hosts(move |_, hosts| {
                    for_each_host(hosts, |host| {
                        worker::Worker::set_current_time(self.end_time);
                        host.free_all_applications();
                        host.shutdown();
                        worker::Worker::clear_current_time();
                    });
                });
            });

            // add each thread's local sim statistics to the global sim statistics.
            scheduler.scope(|s| {
                s.run(|_| {
                    worker::Worker::add_to_global_sim_stats();
                });
            });

            scheduler.join();
        }

        // simulation is finished, so update the status logger
        worker::WORKER_SHARED
            .borrow()
            .as_ref()
            .unwrap()
            .update_status_logger(|state| {
                state.current = self.end_time;
            });

        let num_plugin_errors = worker::WORKER_SHARED
            .borrow()
            .as_ref()
            .unwrap()
            .plugin_error_count();

        // drop the simulation's global state
        // must drop before the allocation counters have been checked
        worker::WORKER_SHARED.borrow_mut().take();

        // since the scheduler was dropped, all workers should have completed and the global object
        // and syscall counters should have been updated

        worker::with_global_sim_stats(|stats| {
            if self.config.experimental.use_syscall_counters.unwrap() {
                log::info!(
                    "Global syscall counts: {}",
                    stats.syscall_counts.lock().unwrap()
                );
            }
            if self.config.experimental.use_object_counters.unwrap() {
                let alloc_counts = stats.alloc_counts.lock().unwrap();
                let dealloc_counts = stats.dealloc_counts.lock().unwrap();
                log::info!("Global allocated object counts: {}", alloc_counts);
                log::info!("Global deallocated object counts: {}", dealloc_counts);

                if *alloc_counts == *dealloc_counts {
                    log::info!("We allocated and deallocated the same number of objects :)");
                } else {
                    // don't change the formatting of this line as we search for it in test cases
                    log::warn!("Memory leak detected");
                }
            }

            let stats_filename = self.data_path.clone().join("sim-stats.json");
            sim_stats::write_stats_to_file(&stats_filename, stats)
        })?;

        Ok(num_plugin_errors)
    }

    fn build_host(&self, host_id: HostId, host_info: &HostInfo) -> anyhow::Result<Box<Host>> {
        let hostname = CString::new(&*host_info.name).unwrap();

        // scope used to enforce drop order for pointers
        let host = {
            let params = HostParameters {
                // the manager sets this ID
                id: host_id,
                // the manager sets this CPU frequency
                cpu_frequency: self.raw_frequency,
                node_seed: host_info.seed,
                hostname,
                node_id: host_info.network_node_id,
                ip_addr: match host_info.ip_addr.unwrap() {
                    std::net::IpAddr::V4(ip) => u32::to_be(ip.into()),
                    // the config only allows ipv4 addresses, so this shouldn't happen
                    std::net::IpAddr::V6(_) => unreachable!("IPv6 not supported"),
                },
                sim_end_time: self.end_time,
                requested_bw_down_bits: host_info.bandwidth_down_bits.unwrap(),
                requested_bw_up_bits: host_info.bandwidth_up_bits.unwrap(),
                cpu_threshold: host_info.cpu_threshold,
                cpu_precision: host_info.cpu_precision,
                log_level: host_info
                    .log_level
                    .map(|x| x.to_c_loglevel())
                    .unwrap_or(logger::_LogLevel_LOGLEVEL_UNSET),
                pcap_config: host_info.pcap_config,
                qdisc: host_info.qdisc,
                init_sock_recv_buf_size: host_info.recv_buf_size,
                autotune_recv_buf: host_info.autotune_recv_buf,
                init_sock_send_buf_size: host_info.send_buf_size,
                autotune_send_buf: host_info.autotune_send_buf,
                native_tsc_frequency: self.native_tsc_frequency,
                model_unblocked_syscall_latency: self.config.model_unblocked_syscall_latency(),
                max_unapplied_cpu_latency: self.config.max_unapplied_cpu_latency(),
                unblocked_syscall_latency: self.config.unblocked_syscall_latency(),
                unblocked_vdso_latency: self.config.unblocked_vdso_latency(),
                strace_logging_options: self.config.strace_logging_mode(),
                shim_log_level: host_info
                    .log_level
                    .unwrap_or_else(|| self.config.general.log_level.unwrap())
                    .to_c_loglevel(),
                use_new_tcp: self.config.experimental.use_new_tcp.unwrap(),
                use_mem_mapper: self.config.experimental.use_memory_manager.unwrap(),
                use_syscall_counters: self.config.experimental.use_syscall_counters.unwrap(),
            };

            Box::new(Host::new(
                params,
                &self.hosts_path,
                self.raw_frequency,
                self.shmem(),
                self.preload_paths.clone(),
            ))
        };

        host.lock_shmem();

        for proc in &host_info.processes {
            let plugin_path =
                CString::new(proc.plugin.clone().into_os_string().as_bytes()).unwrap();
            let plugin_name = CString::new(proc.plugin.file_name().unwrap().as_bytes()).unwrap();
            let pause_for_debugging = host_info.pause_for_debugging;

            let argv: Vec<CString> = proc
                .args
                .iter()
                .map(|x| CString::new(x.as_bytes()).unwrap())
                .collect();

            let envv: Vec<CString> = proc
                .env
                .clone()
                .into_iter()
                .map(|(x, y)| {
                    let mut x: OsString = String::from(x).into();
                    x.push("=");
                    x.push(y);
                    CString::new(x.as_bytes()).unwrap()
                })
                .collect();

            host.continue_execution_timer();

            host.add_application(
                proc.start_time,
                proc.shutdown_time,
                proc.shutdown_signal,
                plugin_name,
                plugin_path,
                argv,
                envv,
                pause_for_debugging,
                proc.expected_final_state,
            );

            host.stop_execution_timer();
        }

        host.unlock_shmem();

        Ok(host)
    }

    fn log_heartbeat(&mut self, now: EmulatedTime) {
        let mut resources: libc::rusage = unsafe { std::mem::zeroed() };
        if unsafe { libc::getrusage(libc::RUSAGE_SELF, &mut resources) } != 0 {
            let err = nix::errno::Errno::last();
            log::warn!("Unable to get shadow's resource usage: {}", err);
            return;
        }

        // the sysinfo syscall also would give memory usage info, but it's less detailed
        let mem_info = resource_usage::meminfo(&mut self.meminfo_file).unwrap();

        // the linux man page says this is in kilobytes, but it seems to be in kibibytes
        let max_memory = (resources.ru_maxrss as f64) / 1048576.0; // KiB->GiB
        let user_time_minutes = (resources.ru_utime.tv_sec as f64) / 60.0;
        let system_time_minutes = (resources.ru_stime.tv_sec as f64) / 60.0;

        // tornettools assumes a specific log format for this message, so don't change it without
        // testing that tornettools can parse resource usage information from the shadow log
        // https://github.com/shadow/tornettools/blob/6c00856c3f08899da30bfc452b6a055572cc4536/tornettools/parse_rusage.py#L58-L86
        log::info!(
            "Process resource usage at simtime {} reported by getrusage(): \
            ru_maxrss={:.03} GiB, \
            ru_utime={:.03} minutes, \
            ru_stime={:.03} minutes, \
            ru_nvcsw={}, \
            ru_nivcsw={}",
            (now - EmulatedTime::SIMULATION_START).as_nanos(),
            max_memory,
            user_time_minutes,
            system_time_minutes,
            resources.ru_nvcsw,
            resources.ru_nivcsw,
        );

        // there are different ways of calculating system memory usage (for example 'free' will
        // calculate used memory differently than 'htop'), so we'll log the values we think are
        // useful, and something parsing the log can calculate whatever it wants
        log::info!(
            "System memory usage in bytes at simtime {} ns reported by /proc/meminfo: {}",
            (now - EmulatedTime::SIMULATION_START).as_nanos(),
            serde_json::to_string(&mem_info).unwrap(),
        );
    }

    fn check_resource_usage(&mut self) {
        if self.check_fd_usage {
            match self.fd_usage() {
                // if more than 90% in use
                Ok((usage, limit)) if usage > limit * 90 / 100 => {
                    log::warn!(
                        "Using more than 90% ({usage}/{limit}) of available file descriptors"
                    );
                    self.check_fd_usage = false;
                }
                Err(e) => {
                    log::warn!("Unable to check fd usage: {e}");
                    self.check_fd_usage = false;
                }
                Ok(_) => {}
            }
        }

        if self.check_mem_usage {
            match self.memory_remaining() {
                // if less than 500 MiB available
                Ok(remaining) if remaining < 500 * 1024 * 1024 => {
                    log::warn!("Only {} MiB of memory available", remaining / 1024 / 1024);
                    self.check_mem_usage = false;
                }
                Err(e) => {
                    log::warn!("Unable to check memory usage: {e}");
                    self.check_mem_usage = false;
                }
                Ok(_) => {}
            }
        }
    }

    /// Returns a tuple of (usage, limit).
    fn fd_usage(&mut self) -> anyhow::Result<(u64, u64)> {
        let dir = std::fs::read_dir("/proc/self/fd").context("Failed to open '/proc/self/fd'")?;

        let mut fd_count: u64 = 0;
        for entry in dir {
            // short-circuit and return on error
            entry.context("Failed to read entry in '/proc/self/fd'")?;
            fd_count += 1;
        }

        let (soft_limit, _) =
            nix::sys::resource::getrlimit(nix::sys::resource::Resource::RLIMIT_NOFILE)
                .context("Failed to get the fd limit")?;

        Ok((fd_count, soft_limit))
    }

    /// Returns the number of bytes remaining.
    fn memory_remaining(&mut self) -> anyhow::Result<u64> {
        let page_size = nix::unistd::sysconf(nix::unistd::SysconfVar::PAGE_SIZE)
            .context("Failed to get the page size")?
            .ok_or_else(|| anyhow::anyhow!("Failed to get the page size (no errno)"))?;

        let avl_pages = nix::unistd::sysconf(nix::unistd::SysconfVar::_AVPHYS_PAGES)
            .context("Failed to get the number of available pages of physical memory")?
            .ok_or_else(|| {
                anyhow::anyhow!(
                    "Failed to get the number of available pages of physical memory (no errno)"
                )
            })?;

        let page_size: u64 = page_size.try_into().unwrap();
        let avl_pages: u64 = avl_pages.try_into().unwrap();

        Ok(page_size * avl_pages)
    }

    pub fn shmem(&self) -> &ShMemBlock<ManagerShmem> {
        &self.shmem
    }
}

pub struct ManagerConfig {
    // deterministic source of randomness for this manager
    pub random: Xoshiro256PlusPlus,

    // map of ip addresses to graph nodes
    pub ip_assignment: IpAssignment<u32>,

    // routing information for paths between graph nodes
    pub routing_info: RoutingInfo<u32>,

    // bandwidths of hosts at ip addresses
    pub host_bandwidths: HashMap<std::net::IpAddr, Bandwidth>,

    // a list of hosts and their processes
    pub hosts: Vec<HostInfo>,
}

/// Helper function to initialize the global [`Host`] before running the closure.
fn for_each_host(host_iter: &mut HostIter<Box<Host>>, mut f: impl FnMut(&Host)) {
    host_iter.for_each(|host| {
        worker::Worker::set_active_host(host);
        worker::Worker::with_active_host(|host| {
            f(host);
        })
        .unwrap();
        worker::Worker::take_active_host()
    });
}

/// Get the raw speed of the experiment machine.
fn get_raw_cpu_frequency_hz() -> anyhow::Result<u64> {
    const CONFIG_CPU_MAX_FREQ_FILE: &str = "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
    let khz: u64 = std::fs::read_to_string(CONFIG_CPU_MAX_FREQ_FILE)?.parse()?;
    Ok(khz * 1000)
}

fn get_required_preload_path(libname: &str) -> anyhow::Result<PathBuf> {
    let libname_c = CString::new(libname).unwrap();
    let libpath_c = unsafe { c::scanRpathForLib(libname_c.as_ptr()) };

    // scope needed to make sure the CStr is dropped before we free libpath_c
    let libpath = if !libpath_c.is_null() {
        let libpath = unsafe { CStr::from_ptr(libpath_c) };
        let libpath = OsStr::from_bytes(libpath.to_bytes());
        Some(PathBuf::from(libpath.to_os_string()))
    } else {
        None
    };

    unsafe { libc::free(libpath_c as *mut libc::c_void) };

    let libpath = libpath.ok_or_else(|| anyhow::anyhow!(format!("Could not library in rpath")))?;

    let bytes = libpath.as_os_str().as_bytes();
    if bytes.iter().any(|c| *c == b' ' || *c == b':') {
        // These are unescapable separators in LD_PRELOAD.
        anyhow::bail!("Preload path contains LD_PRELOAD-incompatible characters: {libpath:?}");
    }

    log::debug!(
        "Found required preload library {} at path {}",
        libname,
        libpath.display(),
    );

    Ok(libpath)
}